【題目】如圖,已知正方形紙片ABCD的邊長為8,⊙O的半徑為2,圓心在正方形的中心上,將紙片按圖示方式折疊,使EA′恰好與⊙O相切于點(diǎn)A′(△EFA′與⊙O除切點(diǎn)外無重疊部分),延長FA′交CD邊于點(diǎn)G,則A′G的長是( )
A. 6 B. C. 7 D.
【答案】B
【解析】
連AC,過F作FH⊥CD于H. 由題干條件易證明點(diǎn)F、A'、O共線,即FG過圓心O,再由∠A=∠COG、∠AOF=∠COG可證明△COG≌AOF,得AF=CG、OF=OG;設(shè)FA=x,將FG和HG用含x式子表示,在RT△FGH中運(yùn)用勾股定理即可求解.
解:
由題干條件可知FA=FA’,∠A=∠EA’F,再由EA′恰好與⊙O相切于點(diǎn)A′可得OA’⊥EA’,則點(diǎn)F、A'、O共線,即FG過圓心O,則OA=OC;
再由∠A=∠COG、∠AOF=∠COG可證明△COG≌AOF,則AF=CG、OF=OG,再由OA’=ON可得FA’=GN;
設(shè)FA=x,則FA=FA’=DH=CG=GN=x,FG=GA’+A’N+NG=2x+4,HG=DC-DH-CG=8-2x,
在RT△FGH中,FG2=FH2+HG2,則(2x+4)2=82+(8-2x)2,解得x=,
則A’G=A’N+NG=4+=,
故選擇B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=3,CD=4,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,5)和點(diǎn)B(m,﹣1)均在反比例函數(shù)圖象上
(1)求m,k的值;
(2)當(dāng)x滿足什么條件時(shí),﹣x+4>﹣;
(3)P為y軸上一點(diǎn),若△ABP的面積是△ABO面積的2倍,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E為AB邊上的一點(diǎn),點(diǎn)F為對角線BD上的一點(diǎn),且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖①,請直接寫出AE與DF的數(shù)量關(guān)系______________;
②將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖②所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說明理由;
(2)如圖③,若四邊形ABCD為矩形,BC=mAB,其他條件都不變,將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請?jiān)趫D③中畫出草圖,并求出AE′與DF′的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時(shí),點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是半圓O的直徑,弦CD∥AB,動點(diǎn)P、Q分別在線段OC、CD上,且DQ=OP,AP的延長線與射線OQ相交于點(diǎn)E、與弦CD相交于點(diǎn)F(點(diǎn)F與點(diǎn)C、D不重合),AB=20,cos ∠AOC=.設(shè)OP=x,△CPF的面積為y.
(1)求證:AP=OQ;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)當(dāng)△OPE是直角三角形時(shí),求線段OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點(diǎn),若在拋物線上有且只有三個(gè)不同的點(diǎn)C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( 。
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線分別交BC,AC于點(diǎn)D,E,BE交AD于點(diǎn)F,AB=AD.
(1)判斷△FDB與△ABC是否相似,并說明理由.
(2)AF與DF相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx的頂點(diǎn)為C(1,),P是拋物線上位于第一象限內(nèi)的一點(diǎn),直線OP交該拋物線對稱軸于點(diǎn)B,直線CP交x軸于點(diǎn)A.
(1)求該拋物線的表達(dá)式;
(2)如果點(diǎn)P的橫坐標(biāo)為m,試用m的代數(shù)式表示線段BC的長;
(3)如果△ABP的面積等于△ABC的面積,求點(diǎn)P坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com