【題目】如圖,AEAB,且AE=AB,BCCD,且BC=CD,請按照圖中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積S=_____

【答案】50

【解析】

求出∠F=AGB=EAB=90°,FEA=BAG根據(jù)AAS證△FEA≌△GAB,推出AG=EF=6AF=BG=2,同理CG=DH=4,BG=CH=2求出FH=14,根據(jù)實(shí)線所圍成的圖形的面積=S梯形EFHDSEFASABCSDHC和面積公式代入求出即可

AEABEFAF,BGAG,∴∠F=AGB=EAB=90°,∴∠FEA+∠EAF=90°,EAF+∠BAG=90°,∴∠FEA=BAG

FEA和△GAB中,∵,∴△FEA≌△GABAAS),AG=EF=6,AF=BG=2同理CG=DH=4,BG=CH=2,FH=2+6+4+2=14,∴梯形EFHD的面積是×EF+DH×FH=×6+4×14=70,∴實(shí)線所圍成的圖形的面積S=S梯形EFHDSEFASABCSDHC

=70×6×2×6+4×2×4×2=50

故答案為:50

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形一腰上的中線把這個(gè)三角形的周長分成 9cm 15cm兩部分,求這個(gè)三角形的腰長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測量被池塘相隔的兩棵樹A、B的距離,他們設(shè)計(jì)了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點(diǎn),其中3位同學(xué)分別測得三組數(shù)據(jù):①AC,∠ACB;②EF、DE、AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測數(shù)據(jù)求得A、B兩樹距離的有(  )

A.0組
B.一組
C.二組
D.三組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的“楊輝三角”告訴了我們二項(xiàng)式乘方展開式的系數(shù)規(guī)律.如:第三行的三個(gè)數(shù)(1,2,1)恰好對應(yīng)著的展開式的系數(shù);第四行的四個(gè)數(shù)恰好對應(yīng)著的展開式的系數(shù);根據(jù)數(shù)表中前五行的數(shù)字所反映的規(guī)律,回答:

(1)寫出圖中第六行括號里的數(shù)字;(請按從左到右的順序填寫)

(2)求;

(3)利用上面規(guī)律計(jì)算求值:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D,E,F(xiàn),G,已知∠CGD=42°
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示,點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(結(jié)果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有甲,乙兩個(gè)三角形,請你用一條直線把每一個(gè)三角形分成兩個(gè)等腰三角形,并標(biāo)出每個(gè)三角形各角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運(yùn)算:對于任意實(shí)數(shù)a,b,都有ab=a(a-b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如: 25=2(2-5)+1=2(-3)+1=-6+1=-5.

(1)求(-2)3的值

(2)若3x的值小于13,求x的取值范圍,并在圖示的數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)居民節(jié)約用電意識,某市對居民用電實(shí)行“階梯收費(fèi)”,具體收費(fèi)標(biāo)準(zhǔn)見下表:

某居民五月份用電190千瓦時(shí),繳納電費(fèi)90元.

(1)x的值和超出部分電費(fèi)單價(jià);

(2)若該戶居民六月份所繳電費(fèi)不低于75元且不超過84元,求該戶居民六月份的用電量范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上的一點(diǎn),點(diǎn)E在BC邊上,連接AE,DE,DC,AE=CD.

(1)求證:△ABE≌△CBD;

(2)若∠BAE=15°,求∠EDC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案