【題目】如圖,已知直線與雙曲線交于A、B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為3,則下列結(jié)論:①k=3;②關(guān)于x的不等式的解集為;③若雙曲線上有一點(diǎn)C的縱坐標(biāo)為6,則△AOC的面積為8;④若在軸上有一點(diǎn)M,軸上有一點(diǎn)N,且點(diǎn)M、N、A、C四點(diǎn)恰好構(gòu)成平行四邊形,則M、N點(diǎn)的坐標(biāo)分別為M(2,0)、N(0,4),其中正確結(jié)論的個(gè)數(shù)( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】B

【解析】分析:①直線與雙曲線交于A、B兩點(diǎn),A點(diǎn)橫坐標(biāo)為3,代入正比例函數(shù),可求得點(diǎn)A的坐標(biāo),繼而求得k值;②根據(jù)對稱性,可求得點(diǎn)B的坐標(biāo),結(jié)合圖象,即可求得關(guān)于x的不等式的解集;③過點(diǎn)CCD⊥x軸于點(diǎn)D,過點(diǎn)AAE⊥軸于點(diǎn)E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,又由雙曲線y= (k>0)上有一點(diǎn)C的縱坐標(biāo)為6,即可求得點(diǎn)C的坐標(biāo),繼而求得答案;④由當(dāng)MN∥AC,且MN=AC時(shí),點(diǎn)M、N、A、C四點(diǎn)恰好構(gòu)成平行四邊形,根據(jù)平移的性質(zhì),即可求得答案.

詳解:

∵直線與雙曲線交于A、B兩點(diǎn),A點(diǎn)橫坐標(biāo)為3,

∴點(diǎn)A的縱坐標(biāo)為:y=×3=2,

∴點(diǎn)A(3,2),

∴2=,

∴k=6;

①錯(cuò)誤;

直線與雙曲線交于A、B兩點(diǎn),點(diǎn)A(3,2),

∴B(-3,-2),

關(guān)于x的不等式的解集為;

②正確;

過點(diǎn)CCD⊥x軸于點(diǎn)D,過點(diǎn)AAE⊥軸于點(diǎn)E,

∵雙曲線y= (k>0)上有一點(diǎn)C的縱坐標(biāo)為6,

∴把y=6代入y=得:x=1,

∴點(diǎn)C(1,6),

∴S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC=×(2+6)×(3-1)=8;

③正確;

如圖,當(dāng)MN∥AC,且MN=AC時(shí),點(diǎn)M、N、A、C四點(diǎn)恰好構(gòu)成平行四邊形,

∵點(diǎn)A(3,2),點(diǎn)C(1,6),

∴根據(jù)平移的性質(zhì)可得:M(2,0),N(0,4)或M′(-2,0),N′(0,-4).

④正確;

綜上,正確的結(jié)論有3個(gè),故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°AD是中線,EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長線于F,連接CF,求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為6的正方形,點(diǎn)E在邊AB上,BE=4,過點(diǎn)E作EF∥BC,分別交BD、CD于G、F兩點(diǎn).若M、N分別是DG、CE的中點(diǎn),則MN的長為

A. 3 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長為1,其面積為 S1,以CD 為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為 S2,按此規(guī)律繼續(xù)下去,則 S9的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為

(1)求口袋中黃球的個(gè)數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中, , AC=BC=3, ABC折疊,使點(diǎn)A落在BC 邊上的點(diǎn)D處,EF為折痕,若AE=2,則的值為_____________.

【答案】

【解析】分析:過點(diǎn)DDGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,

RtDCE中,由勾股定理求得,所以DB=;RtABC中,由勾股定理得;RtDGB中,由銳角三角函數(shù)求得,

設(shè)AF=DF=x,FG= RtDFG中,根據(jù)勾股定理得方程=解得,從而求得.的值

詳解:

如圖所示,過點(diǎn)DDGAB于點(diǎn)G.

根據(jù)折疊性質(zhì),可知AEFDEF,

∴AE=DE=2,AF=DF,CE=AC-AE=1

RtDCE中,由勾股定理得

DB=;

RtABC中,由勾股定理得

RtDGB中, , ;

設(shè)AF=DF=xFG=AB-AF-GB=,

RtDFG ,

=,

解得,

==.

故答案為: .

點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.

型】填空
結(jié)束】
18

【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).

①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;

②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;

③方程4[x]+3(x)+[x)=11的解為1<x<1.5;

④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市政府對城市建設(shè)進(jìn)行了整改,如圖,已知斜坡AB米,坡角(即∠ABC)為45°,ACBC,現(xiàn)計(jì)劃在斜坡中點(diǎn)M處挖去部分斜坡,修建一個(gè)平行于水平線CB的休閑平臺MN和一條新的斜坡AN.(溫馨提示:后兩個(gè)小題結(jié)果都保留根號)

(1)若修建的斜坡AN的坡比為,求休閑平臺MN的長是多少米?

(2)一座建筑物GH距離B點(diǎn)34米遠(yuǎn)(BG=34米),小亮在M點(diǎn)測得建筑物頂部H的仰角(即∠HME)為30°.點(diǎn)A、C、B、G,H在同一個(gè)平面內(nèi),點(diǎn)C、B、G在同一條直線上,且HGCG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,-4),B點(diǎn)在y軸上.

(1)求m的值及這個(gè)二次函數(shù)的解析式;

(2)在x軸上找一點(diǎn)Q,使QAB的周長最小,并求出此時(shí)Q點(diǎn)坐標(biāo);

(3)若P(t,0)是x軸上的一個(gè)動點(diǎn),過Px軸的垂線分別與直線AB和二次函數(shù)的圖象交于DE兩點(diǎn).

①設(shè)線段DE的長為h,當(dāng)0<t<3時(shí),求ht之間的函數(shù)關(guān)系式;

②若直線AB與拋物線的對稱軸交點(diǎn)為N,問是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-4,0),點(diǎn)B在直線y=x+2當(dāng)A、B兩點(diǎn)間的距離最小時(shí),點(diǎn)B的坐標(biāo)是(

A. (,) B. (,) C. (-3,-1) D. (-3,)

查看答案和解析>>

同步練習(xí)冊答案