【題目】如圖,在半徑為50的⊙O中,弦AB的長(zhǎng)為50,
(1)求∠AOB的度數(shù);
(2)求點(diǎn)O到AB的距離.

【答案】
(1)解:∵OA=OB=50,AB=50,

∴△OAB是等邊三角形,

∴∠AOB=60°;


(2)解:過點(diǎn)O作OC⊥AB于點(diǎn)C,

則AC=BC= AB=25,

在Rt△OAC中,OC= =25

即點(diǎn)O到AB的距離為25


【解析】(1)判斷出三角形OAB是等邊三角形即可得出∠AOB的度數(shù);(2)過點(diǎn)O作OC⊥AB于點(diǎn)C,根據(jù)等邊三角形的性質(zhì)及勾股定理的知識(shí),可求出OC.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于圓O,點(diǎn)E在對(duì)角線AC上.
(1)若BC=DC,∠CBD=39°,求∠BCD的度數(shù);
(2)若在AC上有一點(diǎn)E,且EC=BC=DC,求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,∠ACB=90°,BAC=30°,BC=6. (I)如圖①,將線段CA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°,所得到與AB交于點(diǎn)M,則CM的長(zhǎng)=;
(II)如圖②,點(diǎn)D是邊AC上一點(diǎn)D且AD=2 ,將線段AD繞點(diǎn)A旋轉(zhuǎn),得線段AD′,點(diǎn)F始終為BD′的中點(diǎn),則將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)度時(shí),線段CF的長(zhǎng)最大,最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=6,BC=8,BCA的平分線與AB邊的垂直平分線相交于點(diǎn)D,DEAC,DFBC,垂足分別是E、F.

(1)求證:AEBF;

(2)AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民生活用水的費(fèi)用由“城市供水費(fèi)” 和“污水處理費(fèi)” 兩部分組成.為了鼓勵(lì)市民節(jié)約用水,其中城市供水費(fèi)按階梯式計(jì)費(fèi):一個(gè)月用水10噸以內(nèi)(包括10噸)的用戶,每噸收1.5元;一個(gè)月用水超過10噸的用戶,10噸水仍按每噸1.5元收費(fèi),超過10噸的部分,按每噸2元收費(fèi).另外污水處理費(fèi)按每噸0.65元收取.

(1)某居民5月份用水8,應(yīng)交水費(fèi)多少元? 6月份用水12,應(yīng)交水費(fèi)多少元?

(2)若某戶某月用水x噸,請(qǐng)你用含有x的代數(shù)式表示該月應(yīng)交的水費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖像如圖所示,拋物線的對(duì)稱軸為直線x=﹣1,P1(x1 , y1),P2(x2 , y2)是拋物線上的點(diǎn),P3(x3 , y3)是直線l上的點(diǎn),且x3<﹣1<x1<x2 , 則y1 , y2 , y3的大小關(guān)系是(
A.y1<y2<y3
B.y2<y3<y1
C.y3<y1<y2
D.y2<y1<y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將邊長(zhǎng)為2的正方形OABC如圖①放置,O為原點(diǎn). (Ⅰ)若將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°時(shí),如圖②,求點(diǎn)A的坐標(biāo);
(Ⅱ)如圖③,若將圖①中的正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°時(shí),求點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案