【題目】背景情境:
賽賽同學(xué)在學(xué)習(xí)《一元二次方程》中做過這樣一道題:
題目:已知實數(shù)、滿足,,且,求的值.
解:根據(jù)題意得
與為方程的兩根,
∴,
∴
請認(rèn)真閱讀賽賽同學(xué)解題的方法,仔細(xì)思考.
解決問題:
(1)已知實數(shù)、滿足,,且,求的值.
(2)設(shè)實數(shù)、分別滿足,,且,求的值.
(3)已知關(guān)于的方程有兩個根、滿足.當(dāng)的三邊、、滿足,,(a≠b).求的值以及的面積.
【答案】(1)-6;(2)6;(3),面積為1
【解析】
(1)根據(jù)題意可得,,利用完全平方公式求得的值,變形整理所求式子,然后代入求值即可;
(2)將方程等號兩邊同時除以b2得到,再根據(jù)題意計算求值即可;
(3)利用根與系數(shù)的關(guān)系結(jié)合求得m的值,根據(jù)題意可得與是方程的兩個根,同例題整理得,得到△ABC為直角三角形,再利用三角形的面積公式求解即可.
解:(1)由題可知:與為方程的兩根,
∴,,
∴,
∴;
(2)∵,
顯然,
∴,
∴
又∵,
∴,
∴與為方程的兩根,
∴;
(3),
,,
∴,
∴
,
∴,
∴即,
即,
∵
∴與是方程的兩個根,
∴,,
∴,
∴為直角三角形,
則.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點P在BC上,點Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時,求PQ的長度;
(2)如圖2,當(dāng)點P在BC上移動時,求PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,的平分線交于點,交的延長線于點,
(1)寫出對由條件推出的相等或互補的角
(2)與相等嗎?為什么?
(3)證明:
請在下面的括號內(nèi),填上推理的根據(jù),并完成下面的證明:
( ① )
(已證),,( ② )
又(角平分線的定義)
( ③ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點A(1,8),B(1,6),C(7,6).
(1)請直接寫出點D的坐標(biāo);
(2)連接線段OB,OD,BD,請求出△OBD的面積;
(3)若長方形ABCD以每秒1個單位長度的速度向下運動,設(shè)運動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平行四邊形中,連接,,過點作,垂足為,延長與相交于點.
(1)如圖1,若,,求線段的長;
(2)如圖2,若,過點作于點,連接、.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則下列結(jié)論正確的有( )
①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.
A. 1個B. 2個
C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠BAC交BC于點D,點F在BA的延長線上,點E在線段CD上,EF與AC相交于點G,∠BDA+∠CEG=180°.
(1)AD與EF平行嗎?請說明理由;
(2)若點H在FE的延長線上,且∠EDH=∠C,則∠F與∠H相等嗎,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費方案.
甲公司方案:每月的養(yǎng)護(hù)費用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com