【題目】背景情境:

賽賽同學(xué)在學(xué)習(xí)《一元二次方程》中做過這樣一道題:

題目:已知實數(shù)滿足,,且,求的值.

解:根據(jù)題意得

為方程的兩根,

,

請認(rèn)真閱讀賽賽同學(xué)解題的方法,仔細(xì)思考.

解決問題:

1)已知實數(shù)、滿足,,且,求的值.

2)設(shè)實數(shù)、分別滿足,,且,求的值.

3)已知關(guān)于的方程有兩個根滿足.當(dāng)的三邊、滿足,ab).求的值以及的面積.

【答案】1-6;(26;(3,面積為1

【解析】

1)根據(jù)題意可得,,利用完全平方公式求得的值,變形整理所求式子,然后代入求值即可;

2)將方程等號兩邊同時除以b2得到,再根據(jù)題意計算求值即可;

3)利用根與系數(shù)的關(guān)系結(jié)合求得m的值,根據(jù)題意可得是方程的兩個根,同例題整理得,得到△ABC為直角三角形,再利用三角形的面積公式求解即可.

解:(1)由題可知:為方程的兩根,

,

;

2,

顯然

,

,

,

為方程的兩根,

;

3,

,,

,

,

,

,

,

是方程的兩個根,

,

,

為直角三角形,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O中,直徑AB6BC是弦,∠ABC30°,點PBC上,點Q⊙O上,且OP⊥PQ

1)如圖1,當(dāng)PQ∥AB時,求PQ的長度;

2)如圖2,當(dāng)點PBC上移動時,求PQ長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,的平分線交于點,交的延長線于點,

(1)寫出對由條件推出的相等或互補的角

(2)相等嗎?為什么?

(3)證明:

請在下面的括號內(nèi),填上推理的根據(jù),并完成下面的證明:

(已證),,(

(角平分線的定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,點A18),B1,6),C76).

(1)請直接寫出點D的坐標(biāo);

(2)連接線段OB,OD,BD,請求出△OBD的面積;

(3)若長方形ABCD以每秒1個單位長度的速度向下運動,設(shè)運動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平行四邊形中,連接,,過點,垂足為,延長相交于點

1)如圖1,若,,求線段的長;

2)如圖2,若,過點于點,連接、.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,EGEM、FM分別平分∠AEFBEF,EFD,則下列結(jié)論正確的有(  )

①∠DFEAEF;②∠EMF=90°;EGFM;④∠AEFEGC.

A. 1B. 2

C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BACBC于點D,點FBA的延長線上,點E在線段CD上,EFAC相交于點G,BDA+CEG=180°.

(1)ADEF平行嗎?請說明理由;

(2)若點HFE的延長線上,且∠EDH=C,則∠F與∠H相等嗎,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費方案.

甲公司方案:每月的養(yǎng)護(hù)費用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為,頂點Cx軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______

查看答案和解析>>

同步練習(xí)冊答案