【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,DH⊥AB于H,連接OH,求證:∠DHO=∠DCO.
【答案】證明見解析.
【解析】
試題分析:根據(jù)菱形的對(duì)角線互相平分可得OD=OB,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OH=OB,然后根據(jù)等邊對(duì)等角求出∠OHB=∠OBH,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠OB
H=∠ODC,然后根據(jù)等角的余角相等證明即可.
試題解析:∵四邊形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(a﹣3)2+|b﹣6|=0,則以a、b為邊長(zhǎng)的等腰三角形的周長(zhǎng)為( 。
A. 12 B. 15 C. 12或15 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果水位升高3m時(shí)水位變化記作+3m,那么水位下降5m時(shí)水位變化記作( )
A.﹣5m
B.5m
C.2m
D.﹣2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)四邊形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,點(diǎn)E在CD的延長(zhǎng)線上,∠BAC=∠DAE.
(1)試說明:△ABC≌△ADE;
(2)試說明CA平分∠BCD;
(3)如圖(2),過點(diǎn)A作AM⊥CE,垂足為M,試說明:∠ACE=∠CAM=∠MAE=∠E=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果-b是a的立方根,那么下列結(jié)論正確的是( ).
A. -b也是-a的立方根 B. b也是a的立方根
C. b也是-a的立方根 D. ±b都是a的立方根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 兩邊分別相等的兩個(gè)三角形全等
B. 兩邊及一角分別相等的兩個(gè)三角形全等
C. 兩角及一邊分別相等的兩個(gè)三角形全等
D. 三個(gè)角分別相等的兩個(gè)三角形全等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com