【題目】如圖,為的直徑,于點,是上一點,且,延長至點,連接,使,延長與交于點,連結(jié),.
(1)連結(jié),求證:;
(2)求證:是的切線;
(3)若,,求的值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共邊,結(jié)論顯然成立.
(2)連接OC,只需證明OC⊥PC即可.根據(jù)三角形外角知識以及圓心角與圓周角關(guān)系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,結(jié)論得證.
(3)由于∠BCD=∠F,于是tan∠BCD=tanF=,設(shè)BG=2x,則CG=3x.注意到AB是直徑,連接AC,則∠ACB是直角,由相似三角形可知CG2=BGAG,可得出AG的表達式(用x表示),再根據(jù)AG-BG=求出x的值,從而CG、CB、BD、CD的長度可依次得出,最后利用△DEB∽△DBC列出比例關(guān)系算出ED的值.
(1)證明:因為,
所以,
在和中:
所以.
(2)證明:連接.
因為,
,
所以,
因為,
所以,
所以,
因為于,
所以,
所以,
即,
所以,
所以是圓的切線.
(3)因為直徑弦于,
所以,,
所以,
因為,,
所以,
設(shè),則.
連接,則,
因為,,
所以
所以,
所以,
因為,
所以,
解得,
所以,,
所以,
所以,
因為,
所以,
所以,
因為,
所以.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=5,AD=2,把它放在x軸的正半軸上,AD與x軸重合且點A坐標為(3,0).
(1)若以點A為旋轉(zhuǎn)中心,將矩形ABCD逆時針旋轉(zhuǎn),使點B落到y軸上的點B1處,得到矩形AB1C1D1,如圖2,求點B1,C1,D1的坐標.
(2)若將矩形ABCD向左平移一段距離后得到矩形A2B2C2D2,如圖3,再將它以A2為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),使點B2落到y軸上的點B3處.此時點C3恰好落在點A2的正上方得到矩形A2B3C3D3,求平移的距離并寫出C3的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線與y軸交于點.
(1)求c的值;
(2)當時,求拋物線頂點的坐標;
(3)已知點,若拋物線與線段有兩個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行團32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.
(1)求該旅行團中成人與少年分別是多少人?
(2)因時間充裕,該團準備讓成人和少年(至少各1名)帶領(lǐng)10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.
①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?
②若剩余經(jīng)費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8 cm,BC=6 cm.動點P在線段AC上以5 cm/s的速度從點A運動到點C.過點P作PD⊥AB于點D,以PD為一邊向右作矩形PDEF,并且使DE=AD.設(shè)點P的運動時間為t s,矩形PDEF和△ABC重疊部分圖形周長為y cm.
(1)當點F落在邊BC上時,求t的值;
(2)求y與t之間的函數(shù)關(guān)系式;
(3)當矩形PDEF的面積被線段BC平分時,t=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是角平分線,交于,的外接圓與邊相交于點,過作的垂線交于,交于,交于,連接.
(1)求證:是的切線;
(2)若,,求的半徑;
(3)在(2)的條件下,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平行四邊形中,若有一條對角線是一邊的兩倍,則稱這個平行四邊形為兩倍四邊形,其中這條對角線叫做兩倍對角線,這條邊叫做兩倍邊.
如圖1,四邊形是平行四邊形, ,延長交于點,連結(jié)交于點,, .
(1)若,如圖2.
①當時,試說明四邊形是兩倍四邊形;
②是否存在值,使得四邊形是兩倍四邊形,若存在,求出的值,若不存在,請說明理由;
(2)如圖1,四邊形與四邊形都是兩倍四邊形,其中與為兩倍對角線,與為兩倍邊,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是 .
問題探究:
(2)如圖②,在邊長為10的正方形ABCD中,點G是BC邊的中點,E、F分別是AD和CD邊上的點,請?zhí)骄坎⑶蟪鏊倪呅?/span>BEFG的周長的最小值.
問題解決:
(3)如圖③,四邊形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四邊形ABCD的周長是否存在最大值,若存在,請求出最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸的公共點是,,直線經(jīng)過點,直線與拋物線另一個交點的橫坐標是4,它們的圖象如圖所示,有以下結(jié)論:
①拋物線對稱軸是;
②;
③時,;
④若,則.
其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com