【題目】已知二次函數(shù)的圖像如圖所示,它與軸的兩個交點分別為.對于下列命題:①;②;③;④. 其中正確的有(

A.3B.2C.1D.0

【答案】B

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

解:①如圖,∵二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸的兩個交點分別為(-1,0),(3,0),
∴該拋物線的對稱軸是x=-=1,
b+2a=0
故①正確;
②∵拋物線開口方向向上,∴a0
b=-2a0
∵拋物線與y軸交于負(fù)半軸,
c0
abc0
故②錯誤;
③由圖示知,當(dāng)x=-2時,y0,即4a-2b+c0
故③錯誤.
④∵b=-2a
9a+3b=9a-6a=3a,
a0,
9a+3b0,
故④正確;
綜上所述,正確的結(jié)論的個數(shù)是2個.
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明站在江邊某瞭望臺DE的頂端D處,測得江面上的漁船A的俯角為40°.若瞭望臺DE垂直于江面,它的高度為3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長BC10米.

(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19

1)求瞭望臺DE的頂端D到江面AB的距離;

2)求漁船A到迎水坡BC的底端B的距離.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標(biāo)為(-3,0)。

(1)求點B的坐標(biāo);

(2)已知,C為拋物線與y軸的交點。

若點P在拋物線上,且,求點P的坐標(biāo);

設(shè)點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

材料一:所有正整數(shù)在進(jìn)行某種規(guī)定步驟的運算后,會得到一個恒定不變的數(shù),我們把這個恒定不變的數(shù)叫做穩(wěn)定數(shù).規(guī)定求三位數(shù)的穩(wěn)定數(shù)的運算步驟是:任意三位數(shù)A=(百位與個位不相同),將這個數(shù)逆置后得A1=,AA1中較大的數(shù)減去較小的數(shù)得到一個數(shù)B,再將B進(jìn)行一次逆置得B1(若B為兩位數(shù)則交換十位與個位逆置),將B1B相加得CC就是該三位數(shù)A的穩(wěn)定數(shù),記作.

材料二:當(dāng)兩個三位數(shù)的穩(wěn)定數(shù)相同時,這兩個三位數(shù)的百位數(shù)字與個位數(shù)字之差的絕對值或者都大于1,或者都等于1

1)求352的穩(wěn)定數(shù)是 ;百位與個位相差2的三位數(shù),它的穩(wěn)定數(shù)是

2)現(xiàn)有S=301+10pT=100m+40+n1≤p≤9,1≤m≤9,1≤n≤9,p,m,n均是整數(shù)),其中T是偶數(shù),若,3p+m+n=20,|pn|=1,,請求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,三點在上,直徑平分,過點交弦于點,在的延長線上取一點,使得.

1)求證:的切線;

2)連接AFDE于點M,若AD=4,DE=5,求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點,直線是拋物線的對稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)在直線上確定一點,使的周長最小,求出點的坐標(biāo);

3)若點是拋物線上一動點,當(dāng)時,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點PBC邊上一動點,連結(jié)AP,AP的垂直平分線交BD于點G,交 AP于點E,在P點由B點到C點的運動過程中,APG的大小變化情況是( )

A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校小偉同學(xué)酷愛健身,一天去爬山鍛煉,在出發(fā)點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EFGH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點BB、C、D同一水平線上),斜坡AB的坡度為21,且AB長為900,其中小偉走平路的速度為65.7/分,走上坡路的速度為42.3/分.則小偉從C出發(fā)到坡頂A的時間為(  )(圖中所有點在同一平面內(nèi)1.41,1.73

A.60分鐘B.70分鐘C.80分鐘D.90分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個盒子裝入一只不透明的袋子中.

1)攪勻后從中摸出個盒子,盒中的紙片既是軸對稱圖形又是中心對稱圖形的概率是   ;

2)攪勻后先從中摸出個盒子(不放回),再從余下的個盒子中摸出個盒子,把摸出的個盒中的紙片長度相等的邊拼在一起,求拼成的圖形是軸對稱圖形的概率.(不重疊無縫隙拼接)

查看答案和解析>>

同步練習(xí)冊答案