【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)E,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE⊥AB;
(2)若tan∠BDE=, CF=3,求DF的長(zhǎng).
【答案】(1)見解析;(2)6
【解析】試題分析:連接OD,則有OD⊥EF,然后證明OD//AB即可得;
(2)連接AD,則有∠ADB=90°,通過證明△FCD∽△FDA ,可得 FC:FD=CD:DA,再根據(jù)tan∠BDE= ,通過推導(dǎo)即可得.
試題解析:(1)連接OD.∵EF切⊙O于點(diǎn)D,∴OD⊥EF.
又∵OD=OC,∴∠ODC=∠OCD,
∵AB=AC,∴∠ABC=∠OCD,∴∠ABC=∠ODC,
∴AB∥OD,∴DE⊥AB;
(2)連接AD.
∵AC為⊙O的直徑,∴∠ADB=90°, ∴∠B+∠BDE=90°,∠B+∠1=90°,
∴∠BDE=∠1,
∵AB=AC,∴∠1=∠2,又∵∠BDE =∠3,∴∠2=∠3,
∴△FCD∽△FDA ,∴ ,
∵tan∠BDE=,∴tan∠2= ,
∴,∴,
∵CF=3,∴FD=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn).
(1)求該拋物線的解析式;
(2)拋物線的對(duì)稱軸上是否存在一點(diǎn),使的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
(3)設(shè)拋物線上有一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)在該拋物線上滑動(dòng)到什么位置時(shí),滿足,并求出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植4-7棵,活動(dòng)結(jié)束后隨機(jī)抽查了若干名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖甲)和條形圖(圖乙),回答下列問題:
(1)求這次抽查的學(xué)生數(shù);
(2)補(bǔ)全圖甲和圖乙;
(3)計(jì)算被抽查學(xué)生每人植樹量的平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C,D在⊙O上,且點(diǎn)C是的中點(diǎn),過點(diǎn) C作AD的垂線 EF交直線 AD于點(diǎn) E.
(1)求證:EF是⊙O的切線;
(2)連接BC,若AB=5,BC=3,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),試分別根據(jù)下列條件,求出點(diǎn)的坐標(biāo)。
(1)點(diǎn)在軸上;
(2)點(diǎn)橫坐標(biāo)比縱坐標(biāo)大3;
(3)點(diǎn)在過點(diǎn),且與軸平行的直線上。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象過點(diǎn)A(4,1)與正比例函數(shù)()的圖象相交于點(diǎn)B(,3),與軸相交于點(diǎn)C.
(1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;
(2)若點(diǎn)D是點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn),且過點(diǎn)D的直線DE∥AC交BO于E,求點(diǎn)E的坐標(biāo);
(3)在坐標(biāo)軸上是否存在一點(diǎn),使.若存在請(qǐng)求出點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC=6,BC=4,點(diǎn)D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),連接MP、PN、MN.
(1)求證:△PMN是等腰三角形;
(2)將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),
①如圖2,當(dāng)點(diǎn)D、E分別在邊AC兩側(cè)時(shí),求證:△PMN是等腰三角形;
②當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),請(qǐng)直接寫出此時(shí)BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD垂直BC于點(diǎn)D,且AD=BC,BC上方有一動(dòng)點(diǎn)P滿足,則點(diǎn)P到B、C兩點(diǎn)距離之和最小時(shí),∠PBC的度數(shù)為( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com