【題目】(1)先化簡,再求值:+(2x-1)(1-2x).其中x=
(2) 求值:已知4x=3y,求代數(shù)式(x-2y)2-(x-y)(x+y)-2y2的值.
【答案】(1) 4x-1,- ;(2) 3y2-4xy,0
【解析】試題分析:
(1)先將整式化簡,再把未知數(shù)的值代入計算;
(2)先化簡代數(shù)式,再把已知條件整體代入求值.
試題解析:
⑴原式=4x2+(2x-1)(1-2x)
=4x2+(2x-4x2-1+2x)
= 4x2+(4x-4x2-1)
=4x2+4x-4x2-1
=4x-1.
當x= 時,原式=4-= -
⑵ 解:(x-2y)2-(x-y)(x+y)-2y2
=x2-4xy+4y2-(x2-y2)-2y2
=x2-4xy+4y2-x2+y2-2y2
=3y2-4xy.
∵4x=3y,∴原式=3y2-4xy=3y2-3y2=0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A、點B的坐標分別為(4,0)、(0,3).
(1)求AB的長度.
(2)如圖2,若以AB為邊在第一象限內(nèi)作正方形ABCD,求點C的坐標.
(3)在x軸上是否存一點P,使得⊿ABP是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
【1】請寫出一個你學過的特殊四邊形中是等對邊四邊形的圖形的名稱;
【2】如圖,在中,點分別在上,設相交于點,若,.請你寫出圖中一個與相等的角,并猜想圖中哪個四邊形是等對邊四邊形;
【3】在中,如果是不等于的銳角,點分別在上,且.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,2).
(1)將△ABC向右平移6個單位長度,再向下平移4個單位長度,得到△A'B′C′.請畫出平移后的△A′B′C′,并寫出點的坐標A′、B、C′;
(2)求出△A′B′C′的面積;
(3)若連接AA′、CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列推理正確的是( )
A. ∵等腰三角形是軸對稱圖形 ,又∵等腰三角形是等邊三角形,∴等邊三角形是軸對稱圖形
B. ∵軸對稱圖形是等腰三角形, 又∵等邊三角形是等腰三角形,∴等邊三角形是軸對稱圖形
C. ∵等腰三角形是軸對稱圖形 ,又∵等邊三角形是等腰三角形,∴等邊三角形是軸對稱圖形
D. ∵等邊三角形是等腰三角形, 又∵等邊三角形是軸對稱圖形,∴等腰三角形是軸對稱圖形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了求1+2+22+23+24+…+22018的值,可以設s=1+2+22+23+…+22018 , 則則2s=2+22+23+24+…+22018 , 所以2s﹣s=22019﹣1,即1+2+22+…+22018=22019﹣1,仿照以上推理,計算出1+7+72+73+…72020的值( )
A.72021﹣1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲間距離的最大值為( )
A.5 B.6 C.7 D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com