以正方形ABCD的對角線BD為邊作正三角形BDE(E與A在BD同側(cè)),過E作EF⊥AD交DA的延長線于F,則∠AEF的度數(shù)是________°.

45
分析:首先根據(jù)題意作出圖形,由正方形的性質(zhì)求出∠EAD,又知EF⊥AD,進而求出∠AEF的度數(shù).
解答:解:由題意作圖如下,
∵正方形ABCD,且△EBD是正三角形,
∴EO⊥BD,
∴∠OAD=∠ODA=45°,
∴∠EAF=45°,
∵EF⊥AD,
∴∠AEF=45°.
故答案為45.
點評:本題主要考查正方形的性質(zhì)和等邊三角形的性質(zhì),解答過程不是很難.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有兩塊板材邊角料.其中一塊是正方形木板;另一塊是平行四邊形木板.王師傅想將這兩塊木板加工兩塊全等的矩形木板.他將兩塊木板疊放在一起,發(fā)現(xiàn)正方形的一組對邊與平行四邊形的一組對邊恰好重疊(如圖所示),這兩塊木板的重疊部分為五邊形ABFHD圍成的區(qū)域,測得AE=50cm,EF=60cm,點B是線段精英家教網(wǎng)EF的中點.由于受木料紋理的限制,要求裁出的矩形要以點A為一個頂點.
(1)寫出正方形ABCD的邊長;
(2)求DH的長;
(3)設(shè)裁出的矩形木板為矩形APMN,點P、N分別在邊AD、AB上,邊AP為x cm.當(dāng)x為多少時,矩形APMN的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,有兩個動點E,F(xiàn)分別從正方形ABCD的兩個頂點B,C同時出發(fā),以相同速度分別沿邊BC和CD移動,問:
(1)在E,F(xiàn)移動過程中,AE與BF的位置和大小有何關(guān)系?并給予證明;
(2)若AE和BF相交點O,圖中有多少對相似三角形?請把它們寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,正方形ABCD的面積為2a,將正方形ABCD的對角線BD繞點B按逆時針方向旋轉(zhuǎn)90°至BE,以BD和BE為鄰邊作正方形BDFE,則正方形BDFE的面積為
 
(用含a的代數(shù)式表示);
(2)如圖2所示,再將正方形BDFE的對角線BF繞點B按逆時針方向旋轉(zhuǎn)90°至BG,以BF和BG為鄰邊作正方形BFHG,則正方形BFHG的面積為
 
(用含a的代數(shù)式表示);
(3)如果按著上述的過程作第2010次旋轉(zhuǎn)后,所得到的正方形的面積為
 
(用含a的代數(shù)式表示);
(4)在一塊邊長為10米的正方形空地內(nèi)種上草坪(如圖3陰影部分所示),由于這塊正方形空地的左邊和前邊都有許多空地,所以,就在它的左邊和前邊(按著圖2所示的過程)連續(xù)兩次對這塊草坪擴大種植面積,最后如圖3所示的整個區(qū)域內(nèi)都種上草坪,那么此時的草坪面積是多少平方米?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•路北區(qū)一模)已知正方形ABCD的邊長為4,E是CD上一個動點,以CE為一條直角邊作等腰直角三角形CEF,連接BF、BD、FD.
(1)BD與CF的位置關(guān)系是
平行
平行

(2)①如圖,當(dāng)CE=4(即點E與點D重合)時,△BDF的面積為
8
8

②如圖,當(dāng)CE=2(即點E為CD中點)時,△BDF的面積為
8
8

③如圖,當(dāng)CE=3時,△BDF的面積為
8
8

(3)如圖,根據(jù)上述計算的結(jié)果,當(dāng)E是CD上任意一點時,請?zhí)岢瞿銓?img src="http://thumb.zyjl.cn/pic3/upload/images/201201/11/671de963.png" style="vertical-align:middle;FLOAT:right;" />△BDF面積與正方形ABCD的面積之間關(guān)系的猜想,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•保定一模)已知正方形ABCD的邊長為4,E是邊CD上的一個動點,以CE為一條直角邊作等腰直角三角形CEF,連接BF、FD、BD,則BD與CF的位置關(guān)系式
BD∥CF
BD∥CF

(1)如圖1,當(dāng)CE=4(即點E與點D重合)時,△BDF的面積為
8
8
;
(2)如圖2,當(dāng)CE=2(即點E為CD的中點)時,△BDF的面積為
8
8
;
(3)如圖3,當(dāng)CE=3時,△BDF的面積為
8
8


(4)如圖4,根據(jù)上述計算結(jié)果,當(dāng)E是CD邊上任意一點時,請?zhí)岢瞿銓Α鰾DF面積與正方形ABCD的面積之間關(guān)系的猜想;并證明你的猜想.
(5)如圖5,若E是CD延長線上任意一點時,請你判斷(4)中的結(jié)論是否仍然成立.

查看答案和解析>>

同步練習(xí)冊答案