【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.

1)已知△ABC是比例三角形,AB3,BC4,請直接寫出所有滿足條件的AC的長;

2)如圖1,在四邊形ABCD中,ADBC,對角線BD平分∠ABC,∠BAC=∠ADC.求證:△ABC是比例三角形;

3)如圖2,在(2)的條件下,當(dāng)∠ADC90°時,求出的值.

【答案】(1) 2 (負根已經(jīng)舍棄).

【解析】

1)根據(jù)比例三角形的定義分AB2BCAC、BC2ABACAC2ABBC三種情況分別代入計算可得;

2)先證△ABC∽△DCACA2BCAD,再由∠ADB=∠CBD=∠ABDABAD即可得;

3)作AHBD,由ABADBHBD,再證△ABH∽△DBCABBCBHDB,即ABBCBD2,結(jié)合ABBCAC2BD2AC2,據(jù)此可得答案;

1)設(shè)ACm

由題意m23×4324m423m,

m2(負根已經(jīng)舍棄).

2)∵ADBC,

∴∠ACB=∠DAC,

∵∠BAC=∠ADC,

∴△ADC∽△CAB,

,

ADBCAC2,

ADBC

∴∠CBD=∠ADB,

BD平分∠ABC,

∴∠ABD=∠ADB

ABAD,

ABBCAC2,

∴△ABC是比例三角形.

3)如圖2中,作AHBD

可證△ABH∽△DBC,

,

ABBCBHBD,

ABADAHBDH,

BHDHBD,

BD2BH

ABBCBD2,

ABBCAC2,

AC2BD2,

AC0,BD0,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)yax2+bx+ca≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2x1<﹣1,0x21,下列結(jié)論:①4a2b+c0;②2ab0;③a<﹣1;④b2+8a4ac.其中正確的有:____(填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個摩天輪,它共有8個座艙,依次標為18號,摩天輪中心O的離地高度為50米,摩天輪中心到各座艙中心均相距25米,在運行過程中,當(dāng)1號艙比3號艙高5米時,1號艙的離地高度為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的各個頂點都在邊長為1的正方形網(wǎng)格的交點上.

(1)ABC繞原點O順時針旋轉(zhuǎn)90°,作出旋轉(zhuǎn)后的A1B1C1;

(2)A2B2C2ABC關(guān)于原點O對稱,則A2B2C2的各頂點坐標為:A2 B2 ;C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E是BC邊上一點,只用一把無刻度的直尺在AD邊上作點F,使得DF=BE.

(1)作出滿足題意的點F,簡要說明你的作圖過程;

(2)依據(jù)你的作圖,證明:DF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,水庫大壩的橫截面是梯形,壩頂寬5米,CD的長為20米,斜坡AB的坡度i12.5i為坡比即BEAE),斜坡CD的坡度i12i為坡比即CFFD),求壩底寬AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進價為每件40元,當(dāng)售價為每件60元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫yx函數(shù)關(guān)系式,并求出自變量x的取值范圍

2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線yx1交于AB兩點,直線AB與拋物線的對稱軸交于點E

(1)求拋物線的解板式.

(2)P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.

(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小元設(shè)計的“過圓上一點作圓的切線”的尺規(guī)作圖過程

已知:如圖,OO上一點P.

求作:過點PO的切線.

作法:如圖,

作射線OP;

在直線OP外任取一點A,以點A為圓心,AP為半徑作A,與射線OP交于另一點B

連接并延長BAA交于點C;

作直線PC

則直線PC即為所求.

根據(jù)小元設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明: BCA的直徑,

∴∠BPC=90°(____________)(填推理的依據(jù))

OPPC

OPO的半徑,

PCO的切線(____________)(填推理的依據(jù))

查看答案和解析>>

同步練習(xí)冊答案