【題目】(1)某種手機(jī)卡的市話費(fèi)上次已按原收費(fèi)標(biāo)準(zhǔn)降低了m/分鐘,現(xiàn)在再次下調(diào)20%,使收費(fèi)標(biāo)準(zhǔn)為n/分鐘,那么原收費(fèi)標(biāo)準(zhǔn)為____/分鐘;

(2)買一個(gè)籃球需要m,買一個(gè)排球需要n,則買3個(gè)籃球和5個(gè)排球共需要____.

【答案】 (3m+5n)

【解析】

(1)根據(jù)(原收費(fèi)標(biāo)準(zhǔn)-m) ×(1-20%)=新收費(fèi)標(biāo)準(zhǔn)列出代數(shù)式即可;(2) 根據(jù)題意,得3個(gè)籃球需要3m元,5個(gè)排球需要5n元.則共需(3m+5n).

(1)設(shè)原收費(fèi)標(biāo)準(zhǔn)是x/分鐘.則根據(jù)題意,(x-m)(1-20%)=n,
解得:x=;故答案為: .

(2) 根據(jù)題意,得3個(gè)籃球需要3m元,5個(gè)排球需要5n元.

則共需(3m+5n)元.

故答案為:(3m+5n)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】?jī)山M數(shù)據(jù):3,m,2n,5與m,6,n的平均數(shù)都是6,若將這兩組數(shù)據(jù)合并為一組數(shù)據(jù),求這組新數(shù)據(jù)的中位數(shù)、眾數(shù)、方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C(0,﹣3).
(1)求拋物線的解析式;
(2)D是y軸正半軸上的點(diǎn),OD=3,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,
①試說明EF是圓的直徑;
②判斷△AEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點(diǎn)C為旋轉(zhuǎn)中心,將△ABC逆時(shí)針旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對(duì)應(yīng)點(diǎn),且點(diǎn)B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角∠A CA′的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△OAB的頂點(diǎn)的坐標(biāo)分別為O(0,0)、A(1,3)、B(5,0).
(1)請(qǐng)畫出與△OAB關(guān)于原點(diǎn)對(duì)稱的△OCD;(其中A的對(duì)稱點(diǎn)為C,B的對(duì)稱點(diǎn)為D)
(2)在(1)的條件下,連接BC、DA,請(qǐng)畫出一條直線MN(不與直線AC和坐標(biāo)軸重合),將四邊形ABCD的面積分成相等的兩部分,其中M、N分別在AD和BC上,且M、N均為格點(diǎn),并直接寫出直線MN的解析式(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年6月27日,四川共青圖雨城區(qū)委在中里鎮(zhèn)文化館舉辦了第二期青年剪紙培訓(xùn),參加培訓(xùn)的小王想把一塊Rt△ABC廢紙片剪去一塊矩形BDEF紙片,如圖所示,若∠C=30°,AB=10cm,則該矩形BDEF的面積最大為(  )

A.4cm3
B.5cm3
C.10cm3
D.25cm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)x,y在數(shù)軸上對(duì)應(yīng)點(diǎn)如圖所示:

1)在數(shù)軸上表示﹣x,|y|;

2)試把x,y0,﹣x,|y|這五個(gè)數(shù)從小到大用“<”號(hào)連接,

3)化簡(jiǎn):|x+y||yx|+|y|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,連接BD,AD=6cm,BD=8cm,∠DBC=90°,現(xiàn)將△AEF沿BD的方向勻速平移,速度為2cm/s,同時(shí),點(diǎn)G從點(diǎn)D出發(fā),沿DC的方向勻速移動(dòng),速度為2cm/s.當(dāng)△AEF停止移動(dòng)時(shí),點(diǎn)G也停止運(yùn)動(dòng),連接AD,AG,EG,過點(diǎn)E作EH⊥CD于點(diǎn)H,如圖2所示,設(shè)△AEF的移動(dòng)時(shí)間為t(s)(0<t<4).
(1)當(dāng)t=1時(shí),求EH的長(zhǎng)度;
(2)若EG⊥AG,求證:EG2=AEHG;
(3)設(shè)△AGD的面積為y(cm2),當(dāng)t為何值時(shí),y可取得最大值,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(1,a),點(diǎn)B的坐標(biāo)為(b,1),點(diǎn)C的坐標(biāo)為(c,0),其中a、b滿足(a+b﹣8)2+|a﹣b+2|=0.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)當(dāng)ABC的面積為6時(shí),求點(diǎn)C的坐標(biāo);

(3)當(dāng)4≤SABC10時(shí),求點(diǎn)C的橫坐標(biāo)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案