(2005•豐臺區(qū))用換元法解方程:x2+2x-=1
【答案】分析:解此題的關鍵是要有整體思想,采用換元法,首先設x2+2x=y,而后解此分式方程求y,再解關于x的一元二次方程.結果需檢驗.
解答:解:設x2+2x=y,則
于是原方程變形為y-=1,
方程的兩邊都乘以y,約去分母,并整理,得y2-y-6=0.
解這個方程,得y1=3,y2=-2.
當y=3時,x2+2x=3,即x2+2x-3=0,
解這個方程,得x1=-3,x2=1.
當y=-2時,x2+2x=-2,即x2+2x+2=0,
∵△=4-8<0,∴這個方程沒有實數(shù)根.
經(jīng)檢驗,x1=-3,x2=1都是原方程的根.
∴原方程的根是x1=-3,x2=1.
點評:此題考查了學生的分析能力與計算能力.解題的關鍵是要有整體思想,掌握換元思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•豐臺區(qū))如圖,已知平面直角坐標系中三點A(2,0),B(0,2),P(x,0)(x<0),連接BP,過P點作PC⊥PB交過點A的直線a于點C(2,y)
(1)求y與x之間的函數(shù)關系式;
(2)當x取最大整數(shù)時,求BC與PA的交點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•豐臺區(qū))在直角坐標系中,⊙O1經(jīng)過坐標原點O,分別與x軸正半軸、y軸正半軸交于點A、B.
(1)如圖,過點A作⊙O1的切線與y軸交于點C,點O到直線AB的距離為,sin∠ABC=,求直線AC的解析式;
(2)若⊙O1經(jīng)過點M(2,2),設△BOA的內切圓的直徑為d,試判斷d+AB的值是否會發(fā)生變化?如果不變,求出其值;如果變化,求其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年北京市豐臺區(qū)中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•豐臺區(qū))在直角坐標系中,⊙O1經(jīng)過坐標原點O,分別與x軸正半軸、y軸正半軸交于點A、B.
(1)如圖,過點A作⊙O1的切線與y軸交于點C,點O到直線AB的距離為,sin∠ABC=,求直線AC的解析式;
(2)若⊙O1經(jīng)過點M(2,2),設△BOA的內切圓的直徑為d,試判斷d+AB的值是否會發(fā)生變化?如果不變,求出其值;如果變化,求其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年北京市豐臺區(qū)中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•豐臺區(qū))如圖,已知平面直角坐標系中三點A(2,0),B(0,2),P(x,0)(x<0),連接BP,過P點作PC⊥PB交過點A的直線a于點C(2,y)
(1)求y與x之間的函數(shù)關系式;
(2)當x取最大整數(shù)時,求BC與PA的交點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《數(shù)據(jù)收集與處理》(03)(解析版) 題型:填空題

(2005•豐臺區(qū))為了調查某一路口某時段的汽車流量,交警記錄了一個星期同一時段通過該路口的汽車輛數(shù),記錄的情況如下表:

那么這一個星期在該時段通過該路口的汽車平均每天為    輛.

查看答案和解析>>

同步練習冊答案