【題目】如圖,在矩形中,,分別在,上.
(1)若,.
①如圖1,求證:;
②如圖2,點為延長線上一點,的延長線交于,若,求證:;
(2)如圖3,若為的中點,.則的值為 (結果用含的式子表示)
【答案】(1)①見解析;②見解析;(2)
【解析】
(1)①由“ASA”可證△ADE≌△BAF可得AE=BF;
②過點A作AF⊥HD交BC于點F,由等腰三角形的性質和平行線的性質可得∠HAF=∠AFG=∠DAF,可得AG=FG,即可得結論;
(2)過點E作EH⊥DF于H,連接EF,由角平分線的性質可得AE=EH=BE,由“HL”可證Rt△BEF≌Rt△HEF,可得BF=FH,由勾股定理可求解.
證明(1)①∵四邊形ABCD是矩形,AD=AB,
∴四邊形ABCD是正方形,
∴AD=AB,∠DAB=90°=∠ABC,
∴∠DAF+∠BAF=90°,
∵AF⊥DE,
∴∠DAF+∠ADE=90°,
∴∠ADE=∠BAF,且AD=AB,∠DAE=∠ABF=90°,
∴△ADE≌△BAF(ASA),
∴AE=BF;
②如圖,過點A作AF⊥HD交BC于點F,
由(1)可知AE=BF,
∵AH=AD,AF⊥HD,
∴∠HAF=∠DAF.
∵AD∥BC,
∴∠DAF=∠AFG,
∴∠HAF=∠AFG,
∴AG=GF,
∴AG=GB+BF=GB+AE;
(3)如圖,過點E作EH⊥DF于H,連接EF,
∵E為AB的中點,
∴AE=BE=AB,
∵∠ADE=∠EDF,EA⊥AD,EH⊥DF,
∴AE=EH,AD=DH=nAB,
∴BE=EH,EF=EF,
∴Rt△BEF≌Rt△HEF(HL),
∴BF=FH,
設BF=x=FH,則FC=BC-BF=nAB-x,
∵DF2=FC2+CD2,
∴(nAB+x)2=(nAB-x)2+AB2,
∴x==BF,
∴FC=AB,
∴=4n2-1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知正方形ABCO,A(0,3),點D為x軸上一動點,以AD為邊在AD的右側作等腰Rt△ADE,∠ADE=90°,連接OE,則OE的最小值為( )
A. B. C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉角β,且60°<β<180°,其它條件不變,如圖③.你認為(1)中猜想的結論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,點M是斜邊AB的中點,MD∥BC,且MD=CM,DE⊥AB于點E,連結AD、CD.
(1)求證:△MED∽△BCA;
(2)求證:△AMD≌△CMD;
(3)設△MDE的面積為S1,四邊形BCMD的面積為S2,當S2=S1時,求cos∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,……按此規(guī)律,則第50個圖形中面積為1的正方形的個數(shù)為( 。
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,已知△ABC≌△DBE,點D在AC上,BC與DE交于點P,若AD=DC=2.4,BC=4.1.
(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數(shù);
(2)求△DCP與△BPE的周長和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在數(shù)學活動課中,小明剪了一張△ABC的紙片,其中∠A=60°,他將△ABC折疊壓平使點A落在點B處,折痕DE,D在AB上,E在AC上.
(1)請作出折痕DE;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)判斷△ABE的形狀并說明;
(3)若AE=5,△BCE的周長為12,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來市政府每年出資新建一批廉租房,使城鎮(zhèn)住房困難的居民住房狀況得到改善.下面是某小區(qū)2006~2008年每年人口總數(shù)和人均住房面積的統(tǒng)計的折線圖(人均住房面積=該小區(qū)住房總面積/該小區(qū)人口總數(shù),單位:㎡/人).
根據(jù)以上信息,則下列說法:①該小區(qū)2006~2008年這三年中,2008年住房總面積最大;②該小區(qū)2007年住房總面積達到1.728×106 m;③該小區(qū)2008年人均住房面積的增長率為4%.其中正確的有
(A)①②③(B)①②(C)① (D)③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com