如圖1,△ABC的邊BC在直線上,AC ⊥BC,且AC=BC;△EFP的邊FP也在直線上,邊EF與邊AC重合,且EF=FP.
(1)將△EFP沿直線向左平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連結(jié)AP,BQ.猜想 BQ 與AP所滿足的數(shù)量關(guān)系和位置關(guān)系。(直接寫出結(jié)論)
AP BQ,AP BQ; (4分)
(2)將△EFP沿直線向左平移到圖3的位置時(shí),EP的延長線交AC的延長線于點(diǎn)Q,連結(jié)AP,BQ.你認(rèn)為(1)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說明理由.(6分)
(1)BQ=AP,BQ⊥AP.
(2)關(guān)系仍然成立:BQ=AP,BQ⊥AP.間解析
解析試題分析:(1)延長BQ交AP于點(diǎn)M,根據(jù)等腰直角三角板的每一個(gè)銳角都是45°可得∠EPF=45°,然后求出∠CQP=45°,根據(jù)等角對(duì)等邊的性質(zhì)求出CQ=CP,然后利用邊角邊定理證明△BCQ與△ACP全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等,即可證明BQ=AP,對(duì)應(yīng)角相等可得∠CBQ=∠CAP,又∠CBQ+∠BQC=90°,所以∠CAP+∠AQM=90°,從而得到BQ⊥AP;
(2)延長QB交AP于點(diǎn)M,根據(jù)等腰直角三角板的每一個(gè)銳角都是45°可得∠EPF=45°,根據(jù)對(duì)頂角相等得到∠CPQ=45°,然后求出∠CQP=45°,根據(jù)等角對(duì)等邊的性質(zhì)求出CQ=CP,然后利用邊角邊定理證明△BCQ與△ACP全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等,即可證明BQ=AP,對(duì)應(yīng)角相等可得∠BQC=∠APC,又∠CBQ+∠BQC=90°,所以∠PBM+∠APC=90°,從而得到BQ⊥AP.
考點(diǎn):等腰直角三角形;全等三角形的判定與性質(zhì).
點(diǎn)評(píng):本題要求熟練掌握等腰直角三角形的兩直角邊相等,每一個(gè)銳角都是45°的性質(zhì),全等三角形的判定與性質(zhì),題目不比較復(fù)雜但思路比較清晰,此類題目一般都是下一問繼續(xù)沿用第一問的證明思路進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com