【題目】1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊上,

①求證:;

②推斷:的值為   ;

2)類比探究:如圖(2),在矩形中,為常數(shù)).將矩形沿折疊,使點落在邊上的點處,得到四邊形,于點,連接于點.試探究CP之間的數(shù)量關(guān)系,并說明理由;

3)拓展應(yīng)用:在(2)的條件下,連接,當(dāng)時,若,求的長.

【答案】1)①證明見解析;②解:結(jié)論:.理由見解析;(2)結(jié)論:.理由見解析;(3

【解析】

1)①由正方形的性質(zhì)得AB=DA,∠ABE=90°=DAH.所以∠HAO+OAD=90°,又知∠ADO+OAD=90°,所以∠HAO=ADO,于是△ABE≌△DAH,可得AE=DQ.②證明四邊形DQFG是平行四邊形即可解決問題.

2)結(jié)論:如圖2中,作GMABM.證明:△ABE∽△GMF即可解決問題.

3)如圖2-1中,作PMBCBC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.

1)①證明:∵四邊形是正方形,

,

,

,

②解:結(jié)論:

理由:∵,

,

∴四邊形是平行四邊形,

,

故答案為1

2)解:結(jié)論:

理由:如圖2中,作

,

,,

,

,

,

,

∴四邊形是矩形,

,

3)解:如圖21中,作的延長線于

,

,

∴可以假設(shè),,

,,

,

或﹣1(舍棄),

,,

,

,

,

,

,

,

,

,

,,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A(1,0),B(3,0)兩點,與y軸交于點C,直線l是拋物線的對稱軸,D是拋物線的頂點.

1)求該拋物線的函數(shù)表達式;

2)如圖1,連結(jié)BD,線段OC上點E關(guān)于直線l的對稱點E'恰好在線段BD上,求點E的坐標(biāo);

3)如圖2,點P是直線BC上方拋物線上一動點,過點Py軸的平行線分別與BC交于點M,與x軸交于點N.試問:拋物線上是否存在點Q,使得PQNAMN的面積相等,且線段PQ的長度最。咳绻嬖,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,,斜邊,的中點,以為圓心,線段的長為半徑畫圓心角為的扇形,弧經(jīng)過點,則圖中陰影部分的面積為_______平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團隊協(xié)作、頑強拼搏的女排精神.如圖是某次比賽中墊球時的動作,若將墊球后排球的運動路線近似的看作拋物線,在同一豎直平面內(nèi)建立如圖所示的直角坐標(biāo)系,已知運動員墊球時(圖中點)離球網(wǎng)的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網(wǎng)上端0.26米處(圖中點)越過球網(wǎng)(女子排球賽中球網(wǎng)上端距地面的高度為2.24米),落地時(圖中點)距球網(wǎng)的水平距離為2.5米,則排球運動路線的函數(shù)表達式為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥品生產(chǎn)基地共有5條生產(chǎn)線,每條生產(chǎn)線每月生產(chǎn)藥品20萬盒,該基地打算從第一個月開始到第五個月結(jié)束,對每條生產(chǎn)線進行升級改造.改造時,每個月只升級改造一條生產(chǎn)線,這條生產(chǎn)線當(dāng)月停產(chǎn),并于下個月投入生產(chǎn),其他生產(chǎn)線則正常生產(chǎn).經(jīng)調(diào)查,每條生產(chǎn)線升級改造后,每月的產(chǎn)量會比原來提高20%

1)根據(jù)題意,完成下面問題:

①把下表補充完整(直接寫在橫線上):

月數(shù)

1個月

2個月

3個月

4個月

5個月

6個月

產(chǎn)量/萬盒

   

   

   

92

②從第1個月進行升級改造后,第   個月的產(chǎn)量開始超過未升級改造時的產(chǎn)量;

2)若該基地第x個月(1x5,且x是整數(shù))的產(chǎn)量為y萬盒,求y關(guān)于x的函數(shù)關(guān)系式;

3)已知每條生產(chǎn)線的升級改造費是30萬元,每盒藥品可獲利3元.設(shè)從第1個月開始升級改造后,生產(chǎn)藥品所獲總利潤為W1萬元;同時期內(nèi),不升級改造所獲總利潤為W2萬元設(shè)至少到第n個月(n為正整數(shù))時,W1大于W2,求n的值.(利潤=獲利﹣改造費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建全國文明城市省級文明城區(qū)過程中,城區(qū)污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對城區(qū)周邊污水進行處理.已知每臺A型設(shè)備價格為12萬元,每臺B型設(shè)備價格為10萬元;1A型設(shè)備和2B型設(shè)備每周可以處理污水640噸,2A型設(shè)備和3B型設(shè)備每周可以處理污水1080噸.

1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?

2)要想使污水處理廠購買設(shè)備的資金不超過230萬元,但每周處理污水的量又不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某社區(qū)工作人員在社區(qū)隨機抽取了若干名居民開展環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖所示條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分).

請根據(jù)圖中信息,解答下列問題:

1)本次調(diào)查一共抽取了__________名居民;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù);并直接寫出樣本數(shù)據(jù)的眾數(shù)和中位數(shù);

3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設(shè)為一等獎.根據(jù)調(diào)查結(jié)果,請你幫社區(qū)工作人員直接估計出需準(zhǔn)備多少份一等獎獎品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學(xué)生選一個主題參與.為了解活動開展情況,學(xué)校隨機抽取了部分學(xué)生進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)本次隨機調(diào)查的學(xué)生人數(shù)是 人;

2)請你補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;

4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 將一列有理數(shù)﹣1,2,﹣3,4,﹣56…如圖所示有序排列,4所在位置為峰1,﹣9所在位置為峰2….

1)處在峰5位置的有理數(shù)是_____;

22022應(yīng)排在A,BC,D,E_____的位置上.

查看答案和解析>>

同步練習(xí)冊答案