【題目】如圖,在ABC中,ABAC,AHBC,點(diǎn)EAH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FHEH

1)求證:四邊形EBFC是菱形;

2)若∠BAC=∠ECF,求∠ACF的度數(shù).

【答案】1)見(jiàn)解析;(2)∠ACF90°

【解析】

1)根據(jù)題意可證得△BCE為等腰三角形,由AHCB,則BH=HC,從而得出四邊形EBFC是菱形;
2)由(1)得∠2=3,再根據(jù)∠BAC=ECF,得∠4=3,由AHCB,得∠3+1+2=90°,從而得出∠ACF=90°

1)∵AB=AC,AHBC

BH=HC

FH=EH,

∴四邊形EBFC是平行四邊形,

又∵AHBC

∴四邊形EBFC是菱形;

2)如圖,

∵四邊形EBFC是菱形,

∴∠2=∠3=ECF

AB=AC,AHCB

∴∠4=BAC

∵∠BAC=∠ECF,

∴∠4=∠3,

AHCB,

∴∠4+∠1+∠2=90°

∴∠3+∠1+∠2=90°

∴∠ACF=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 已知∠ABC=90°,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),分別以AB、AP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長(zhǎng)交BP于點(diǎn)F. 試說(shuō)明:(1)△ABP≌△AEQ;(2)EFBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016湖北省咸寧市)如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E上的一動(dòng)點(diǎn)(不與AB重合),點(diǎn)F上的一點(diǎn),連接OE、OF,分別與AB、BC交于點(diǎn)G,H,且EOF=90°,有以下結(jié)論:

②△OGH是等腰三角形;

四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;

④△GBH周長(zhǎng)的最小值為

其中正確的是________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第10個(gè)圖形中共有_____個(gè)點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.

1)若花園的面積為192m2, x的值;

2)若在P處有一棵樹(shù)與墻CDAD的距離分別是15m6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生對(duì)第二十屆中國(guó)哈爾濱冰雪大世界主題景觀的了解情況,在全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計(jì)圖:

(1)本次調(diào)查共抽取了多少名學(xué)生;

(2)通過(guò)計(jì)算補(bǔ)全條形圖;

(3)若該學(xué)校共有名學(xué)生,請(qǐng)你估計(jì)該學(xué)校選擇比較了解項(xiàng)目的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)專(zhuān)賣(mài)店經(jīng)銷(xiāo)某種型號(hào)的汽車(chē).已知該型號(hào)汽車(chē)的進(jìn)價(jià)為萬(wàn)元/輛,經(jīng)銷(xiāo)一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車(chē)售價(jià)定為萬(wàn)元/輛時(shí),平均每周售出輛;售價(jià)每降低萬(wàn)元,平均每周多售出輛.

1)當(dāng)售價(jià)為萬(wàn)元/輛時(shí),平均每周的銷(xiāo)售利潤(rùn)為_(kāi)__________萬(wàn)元;

2)若該店計(jì)劃平均每周的銷(xiāo)售利潤(rùn)是萬(wàn)元,為了盡快減少庫(kù)存,求每輛汽車(chē)的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 mA處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18 m.

(1)當(dāng)h=2.6時(shí),求yx的關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)

(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案