40、如圖所示,有四個(gè)動(dòng)點(diǎn)P,Q,E,F(xiàn)分別從正方形ABCD的四個(gè)頂點(diǎn)出發(fā),沿著AB,BC,CD,DA以同樣速度向B,C,D,A各點(diǎn)移動(dòng).
(1)試判斷四邊形PQEF是否是正方形,并證明;
(2)PE是否總過某一定點(diǎn),并說明理由.
分析:(1)正方形的定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形,故可根據(jù)正方形的定義證明四邊形PQEF是否使正方形.
(2)證PE是否過定點(diǎn)時(shí),可連接AC,證明四邊形APCE為平行四邊形,即可證明PE過定點(diǎn).
解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,
∴BP=QC=ED=FA.
又∵∠BAD=∠B=∠BCD=∠D=90°,
∴△AFP≌△BPQ≌△CQE≌△DEF.
∴FP=PQ=QE=EF,∠APF=∠PQB.
∵∠FPQ=90°,
∴四邊形PQEF為正方形.

(2)連接AC交PE于O,
∵AP平行且等于EC,
∴四邊形APCE為平行四邊形.
∵O為對(duì)角線AC的中點(diǎn),
∴對(duì)角線PE總過AC的中點(diǎn).
點(diǎn)評(píng):在證明過程中,應(yīng)了解正方形和平行四邊形的判定定理,為使問題簡(jiǎn)單化,在證明過程中,可適當(dāng)加入輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級(jí)數(shù)學(xué) (下冊(cè)) (配華東師大版新課標(biāo)) 華東師大版新課標(biāo) 題型:059

如圖所示,有四個(gè)動(dòng)點(diǎn)P,Q,E,F(xiàn)分別從面積為4的正方形ABCD的頂點(diǎn)A,B,C,D同時(shí)出發(fā),沿著AB,BC,CD,DA以同樣的速度向B,C,D,A移動(dòng).

(1)證明四邊形PQEF是正方形;

(2)PE是否總過某一定點(diǎn)?說明理由;

(3)四邊形PQEF的頂點(diǎn)位于何處,其面積是否有最小值?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,有四個(gè)動(dòng)點(diǎn)P,Q,E,F(xiàn)分別從正方形ABCD的四個(gè)頂點(diǎn)出發(fā),沿著AB,BC,CD,DA以同樣速度向B,C,D,A各點(diǎn)移動(dòng).
(1)試判斷四邊形PQEF是否是正方形,并證明;
(2)PE是否總過某一定點(diǎn),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,有四個(gè)動(dòng)點(diǎn)P,Q,E,F(xiàn)分別從正方形ABCD的四個(gè)頂點(diǎn)出發(fā),沿著AB,BC,CD,DA以同樣速度向B,C,D,A各點(diǎn)移動(dòng).
(1)試判斷四邊形PQEF是否是正方形,并證明;
(2)PE是否總過某一定點(diǎn),并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖所示,有四個(gè)動(dòng)點(diǎn)P,Q,E,F(xiàn)分別從正方形ABCD的四個(gè)頂點(diǎn)出發(fā),沿著AB,BC,CD,DA以同樣速度向B,C,D,A各點(diǎn)移動(dòng).
(1)試判斷四邊形PQEF是否是正方形,并證明;
(2)PE是否總過某一定點(diǎn),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案