解:(1)∵∠AOB=70°,∠BOD=40°,
∴∠AOD=∠AOB-∠BOD=70°-40°=30°,
∵OD是∠AOC的平分線,
∴∠AOC=2∠AOD=60°,
∴∠BOC=∠AOB-∠AOC=10°;
(2)設(shè)∠BOC=α,
∴∠BOD=3∠BOC=3α,
依據(jù)題意,分兩種情況:
①當(dāng)射線OC在∠AOB內(nèi)部時(shí),此時(shí)射線OD的位置只有兩種可能:
i)若射線OD在∠AOC內(nèi)部,如圖2,
∴∠COD=∠BOD-∠BOC=2α,
∵∠AOD=
∠AOC,
∴∠AOD=∠COD=2α,
∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,
∴α=14°,
∴∠BOC=14°;
ii)若射線OD在∠AOB外部,如圖3,
∴
∠COD=∠BOD-∠BOC=2α,
∵∠AOD=
∠AOC,
∴∠AOD=
∠COD=
α,
∴∠AOB=∠BOD-∠AOD=3α-
α=
α=70°,
∴α=30°,
∴∠BOC=30°;
②當(dāng)射線OD在∠AOB外部時(shí),
依據(jù)題意,此時(shí)射線OC靠近射線OB,
∵∠BOC<45°,∠AOD=
∠AOC,
∴射線OD的位置也只有兩種可能:
i)若射線DO在∠AOB內(nèi)部,如圖4,
則∠COD=∠BOC+∠BOD=4α,
∵∠AOD=
∠AOC,
∴∠AOD=∠COD=4α,
∴∠AOB=∠BOD+∠AOD=4α,
∴AOB=∠BOD+∠AOD=3α+4α=7α=70°,
∴α=10°,
∴∠BOC=10°
ii)若射線OD在∠AOB外部,如圖5,
則∠COD=∠BOC+∠DOB=4α,
∵∠AOD=
∠AOC,
∴∠AOD=
∠COD=
α,
∴∠AOB=∠BOD-∠AOD=3α-
α=
α=70°,
∴α=42°,
∴∠BOC=42°,
綜上所述:∠BOC的度數(shù)分別是10°,14°,30°,42°.
分析:(1)根據(jù)角平分線的性質(zhì)得出∠AOC=2∠AOD=60°,進(jìn)而得出∠BOC=∠AOB-∠AOC即可;
(2)①當(dāng)射線OC在∠AOB內(nèi)部時(shí),此時(shí)射線OD的位置只有兩種可能:i)若射線OD在∠AOC內(nèi)部,ii)若射線OD在∠AOB外部,
②當(dāng)射線OD在∠AOB外部時(shí),i)若射線DO在∠AOB內(nèi)部,ii)若射線OD在∠AOB外部分別求出即可.
點(diǎn)評(píng):此題主要考查了角平分線的性質(zhì)以及分類討論思想的應(yīng)用,根據(jù)已知正確分射線OD在∠AOB外部或內(nèi)部得出是解題關(guān)鍵.