【題目】某貨車銷售公司,分別試銷售兩種型號(hào)貨車各一個(gè)月,并從中選擇一種長(zhǎng)期銷售,設(shè)每月銷售量為x輛若銷售甲型貨車,每月銷售的利潤(rùn)為y1(萬(wàn)元),已知每輛甲型貨車的利潤(rùn)為(m+6)萬(wàn)元,(m是常數(shù),9≤m≤11),每月還需支出其他費(fèi)用8萬(wàn)元,受條件限制每月最多能銷售甲型貨車25輛;若銷售乙型貨車,每月的利潤(rùn)y2(萬(wàn)元)與x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x=10時(shí),y2=20,當(dāng)x=20時(shí),y2=55,受條件限制每月最多能銷售乙型貨車40輛.
(1)分別求出y1、y2與x的函數(shù)關(guān)系式,并確定x的取值范范圍;
(2)分別求出銷售這兩種貨車的最大月利潤(rùn);(最大利潤(rùn)能求值的求值,不能求值的用式子表示)
(3)為獲得最大月利潤(rùn),該公司應(yīng)該選擇銷售哪種貨車?請(qǐng)說(shuō)明理由.
【答案】(1)y1=(m+6)x﹣8(0≤x≤25);y2=﹣x2+5x﹣25(0≤x≤40);(2)當(dāng)x=25時(shí),y1 取得最大值,最大值為25m+142.當(dāng)x=40時(shí),y2有最大值,最大值為95.(3)應(yīng)選擇甲種貨車,理由見解析.
【解析】
(1)根據(jù)待定系數(shù)法即可求出兩個(gè)函數(shù)解析式;(2)根據(jù)函數(shù)的性質(zhì)和自變量的取值范圍即可求解;(3)根據(jù)函數(shù)的最大值即可求得結(jié)果.
解:(1)根據(jù)題意,得
y1=(m+6)x﹣8,(0≤x≤25).
將x=10、y2=20,x=20、y2=55代入y2=ax2+bx﹣25,
解得:
∴y2=,(0≤x≤40).
(2)∵m是常數(shù),(9≤m≤11),∴m+6>0,
∴y1 隨x的增大而增大,
∴當(dāng)x=25時(shí),y1 取得最大值,最大值為25m+142.
∵y2=﹣(x﹣50)2+100,
∴當(dāng)x<50時(shí),y隨x的增大而增大,
∵0≤x≤40,
∴當(dāng)x=40時(shí),y2有最大值,最大值為95.
(3)∵y1 的最大值為25m+142.且9≤m≤11,
∴367≤y1≤417,
y2 有最大值為95,
∴95<367.
故應(yīng)選擇甲種貨車.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過(guò)點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)D,且DA∶AB=1∶2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+6經(jīng)過(guò)點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C.點(diǎn)D是拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)D的橫坐標(biāo)為m(1<m<4),連接AC,BC,DB,DC.
(1)求拋物線的解析式.
(2)當(dāng)△BCD的面積等于△AOC的面積的時(shí),求m的值.
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)Q,使得△QAC的周長(zhǎng)最小,若存在,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,成本為2元/千克,每天的產(chǎn)量(百千克)與銷售價(jià)格(元/千克)滿足函數(shù)關(guān)系式,從市場(chǎng)反饋的信息發(fā)現(xiàn),該半成品食材每天的市場(chǎng)需求量(百千克)與銷售價(jià)格(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
銷售價(jià)格(元/千克) | 2 | 4 | …… | 10 |
市場(chǎng)需求量(百千克) | 12 | 10 | …… | 4 |
已知按物價(jià)部門規(guī)定銷售價(jià)格不低于2元/千克且不高于10元/千克.
(1)直接寫出與的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)當(dāng)每天的產(chǎn)量小于或等于市場(chǎng)需求量時(shí),這種半成品食材能全部售出,而當(dāng)每天的產(chǎn)量大于市場(chǎng)需求量時(shí),只能售出符合市場(chǎng)需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.
①當(dāng)每天的半成品食材能全部售出時(shí),求的取值范圍;
②求廠家每天獲得的利潤(rùn)y(百元)與銷售價(jià)格的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)為______元/千克時(shí),利潤(rùn)有最大值;若要使每天的利潤(rùn)不低于24(百元),并盡可能地減少半成品食材的浪費(fèi),則應(yīng)定為______元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)
根據(jù)要求,解答下列問(wèn)題.
(1)根據(jù)要求,解答下列問(wèn)題.
①方程x2-2x+1=0的解為________________________;
②方程x2-3x+2=0的解為________________________;
③方程x2-4x+3=0的解為________________________;
…… ……
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:
①方程x2-9x+8=0的解為________________________;
②關(guān)于x的方程________________________的解為x1=1,x2=n.
(3)請(qǐng)用配方法解方程x2-9x+8=0,以驗(yàn)證猜想結(jié)論的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司投資新建了一商場(chǎng),共有商鋪30間.據(jù)預(yù)測(cè),當(dāng)每間的年租金定為10萬(wàn)元時(shí),可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬(wàn)元,未租出的商鋪每間每年交各種費(fèi)用5 000元.
(1)當(dāng)每間商鋪的年租金定為13萬(wàn)元時(shí),能租出多少間?
(2)當(dāng)每間商鋪的年租金定為多少萬(wàn)元時(shí),該公司的年收益(收益=租金-各種費(fèi)用)為275萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為24,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮用6張背面完全相同的紙牌進(jìn)行摸牌游戲,游戲規(guī)則如下:將牌面分別標(biāo)有數(shù)字1、3、6的三張紙牌給小明,將牌面分別標(biāo)有數(shù)字2、4、5的三張紙牌給小亮,小明小亮分別將紙牌背面朝上,從各自的三張紙牌中隨機(jī)抽出一張,并將抽出的兩張卡片上的數(shù)字相加,如果和為偶數(shù),則小明獲勝;如果和為奇數(shù),則小亮獲勝.
(1)小明抽到標(biāo)有數(shù)字6的紙牌的概率為 ;
(2)請(qǐng)用樹狀圖或列表的方法求小亮獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com