【題目】如圖,AC⊥x軸于點A,點B在y軸的正半軸上,∠ABC=60°,AB=4,BC=2 ,點D為AC與反比例函數(shù)y= 的圖象的交點.若直線BD將△ABC的面積分成1:2的兩部分,則k的值為 .
【答案】﹣4或﹣8
【解析】解:如圖所示,過C作CE⊥AB于E,
∵∠ABC=60°,BC=2 ,
∴Rt△CBE中,CE=3,
又∵AC=4,
∴△ABC的面積= AB×CE= ×4×3=6,
連接BD,OD,
∵直線BD將△ABC的面積分成1:2的兩部分,
∴點D將線段AC分成1:2的兩部分,
當AD:CD=1:2時,△ABD的面積= ×△ABC的面積=2,
∵AC∥OB,
∴△DOA的面積=△ABD的面積=2,
∴ |k|=2,即k=±4,
又∵k<0,
∴k=﹣4;
當AD:CD=2:1時,△ABD的面積= ×△ABC的面積=4,
∵AC∥OB,
∴△DOA的面積=△ABD的面積=4,
∴ |k|=4,即k=±8,
又∵k<0,
∴k=﹣8,
所以答案是:﹣4或﹣8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2 ,∠BAC=120°,點D,E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y= (x<0)的圖象交于點A(﹣1,m),與x軸交于點B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點M,與x軸交于點N,連接AN,S△AMN= ,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O在直線MN上,∠AOB=90°,OC平分∠MOB.
(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;
(2)若∠AOC=則∠BON=_______(用含有的式子表示);
(3)將∠AOB繞著點O順時針轉(zhuǎn)到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(shù)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的圖象交x軸于A(﹣2,0)和點B,交y軸負半軸于點C,且OB=OC,下列結(jié)論:
①2b﹣c=2;②a= ;③ac=b﹣1;④ >0
其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請按要求完成下列問題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請運用所學的計算方法,寫出兩個不同的運算式,使四個數(shù)字的計算結(jié)果為24.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點,⊙O的切線MA與FB的延長線交于點M;P為AM上一點,PB的延長線交⊙O于點C,D為BC上一點且PA=PD,AD的延長線交⊙O于點E.
(1)求證: = ;
(2)若ED、EA的長是一元二次方程x2﹣5x+5=0的兩根,求BE的長;
(3)若MA=6 ,sin∠AMF= ,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出A1的坐標.
(2)畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后得到的△A2B2C2 , 并寫出A2的坐標.
(3)畫出△A2B2C2關(guān)于原點O成中心對稱的△A3B3C3 , 并寫出A3的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com