已知△ABC中,AC=3cm,BC=4cm,AB=5cm,則△ABC的外接圓半徑是


  1. A.
    2cm
  2. B.
    2.5cm
  3. C.
    3cm
  4. D.
    4cm
B
分析:因?yàn)椤鰽BC三邊長分別為3cm、4cm、5cm,符合勾股定理,即△ABC是直角三角形;由直角三角形的特征知,圓心為斜邊中點(diǎn),半徑等于斜邊的一半.
解答:∵32+42=52
∴△ABC是直角三角形,且AB為斜邊,
∴三角形外接圓的半徑=×5=2.5cm,
∴三角形外接圓的半徑等于2.5cm.
故選B.
點(diǎn)評:本題考查的是直角三角形的外接圓半徑,重點(diǎn)在于理解直角三角形的外接圓是以斜邊中點(diǎn)為圓心,斜邊長的一半為半徑的圓.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知△ABC中,AC=BC,∠C=Rt∠.如圖,將△ABC進(jìn)行折疊,使點(diǎn)A落在線段BC上(包括點(diǎn)B和點(diǎn)C),設(shè)點(diǎn)A的落點(diǎn)為D,折痕為EF,當(dāng)△DEF是等腰三角形時,點(diǎn)D可能的位置共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD、FE分別交AC,BC于點(diǎn)D,E兩點(diǎn),給出以下個結(jié)論:
①CD=BE  
②四邊形CDFE不可能是正方形  
③△DEF是等腰直角三角形
S四邊形CDFE=
12
S△ABC
.當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(點(diǎn)D不與A,C重合),
上述結(jié)論中始終正確的有
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,求證:AB=BC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=BC,AD平分∠BAC交BC于D,點(diǎn)E為AB上一點(diǎn),且∠EDB=∠B,現(xiàn)有下列兩個結(jié)論:①AB=AD+CD ②AB=AC+CD.
(1)如圖1,若∠C=90°,則結(jié)論
成立,并證明你的結(jié)論.
(2)如圖2,若∠C=100°,則結(jié)論
成立,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=BC,∠ACB=90゜,點(diǎn)P在射線AC上,連接PB,將線段PB繞點(diǎn)B逆時針旋轉(zhuǎn)90゜得線段BN,AN交直線BC于M.
(1)如圖1.若點(diǎn)P與點(diǎn)C重合,則
AM
MN
=
1
1
,
MC
AP
=
1
2
1
2
(直接寫出結(jié)果):
(2)如圖2,若點(diǎn)P在線段AC上,求證:AP=2MC;
(3)如圖3,若點(diǎn)P在線段AC的延長線上,完成圖形,并直接寫出
MC
AP
=
1
2
1
2

查看答案和解析>>

同步練習(xí)冊答案