【題目】如圖,EF分別是平行四邊形ABCD的邊AD、BC上的點(diǎn),且BEDF,AC分別交BEDF于點(diǎn)G、H.下列結(jié)論:①四邊形BFDE是平行四邊形;②△AGE≌△CHF;③BG=DH;④SAGESCDH=GEDH,其中正確的個(gè)數(shù)是(  )

A.1B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

利用兩組對邊平行的四邊形是平行四邊形判斷①;利用ASA證明兩三角形全等判斷②;利用全等三角形的性質(zhì)可判斷③④.

解:∵四邊形ABCD是平行四邊形

ADBC,ABCDAD=BC

BEDF,ADBC

∴四邊形BEDF是平行四邊形,

故①正確

∵四邊形BEDF是平行四邊形,

BF=DE,DF=BE

AE=FC,

ADBC,BEDF

∴∠DAC=ACB,∠ADF=DFC,∠AEB=ADF

∴∠AEB=DFC,且∠DAC=ACB,AE=CF

∴△AGE≌△CHF(ASA)

故②正確

∵△AGE≌△CHF

GE=FH,且BE=DF

BG=DH

故③正確

∵△AGE≌△CHF

SAGE=SCHF,

SCHFSCDH=FHDH

SAGESCDH=GEDH,

故④正確

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿足SPAB=S矩形ABCD,則點(diǎn)PA、B兩點(diǎn)的距離之和PA+PB的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是雙曲線上的一個(gè)動(dòng)點(diǎn),連接并延長交雙曲線于點(diǎn)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段若點(diǎn)在雙曲線上運(yùn)動(dòng),則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙O與邊AB交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BCE

1)求證:點(diǎn)E是邊BC的中點(diǎn);

2)求證:BC2BDBA;

3)當(dāng)ACBC時(shí),四邊形OCED是什么四邊形,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的小布袋中裝有4個(gè)質(zhì)地、大小完全相同的小球,它們分別標(biāo)有數(shù)字0,12,3,小明從布袋里隨機(jī)摸出一個(gè)小球,記下數(shù)字為,小紅在剩下的3個(gè)小球中隨機(jī)摸出一個(gè)小球,記下數(shù)字為,這樣確定了點(diǎn)的坐標(biāo)

1)畫樹狀圖或列表,寫出點(diǎn)所有可能的坐標(biāo);

2)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若在第一象限,則小明勝;否則,小紅勝;這個(gè)游戲公平嗎?請你作出判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知:點(diǎn)(x,y)在直線y=x+1上,且x2+y2=2,求x7+y7的值.

(2)計(jì)算:

(3)已知a、b、c是直角三角形△ABC的角A、BC所對的邊,∠C=90°.求:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做整點(diǎn),已知反比例函數(shù)ym0)與yx25在第四象限內(nèi)圍成的封閉圖形(包括邊界)內(nèi)的整點(diǎn)的個(gè)數(shù)為4,則實(shí)數(shù)m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是某兒童樂園為小朋友設(shè)計(jì)的滑梯平面圖.已知BC=4 m,AB=6 m,中間平臺(tái)寬度DE=1 m,EN,DM,CB為三根垂直于AB的支柱,垂足分別為N,M,B,EAB=31°,DFBC于點(diǎn)F,CDF=45°,DMBC的水平距離BM的長度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AD2AB,AHCD于點(diǎn)HNBC中點(diǎn),若∠D68°,則∠NAH_____

查看答案和解析>>

同步練習(xí)冊答案