【題目】京滬高速公路全長1262千米,汽車沿京滬高速公路從上海駛往北京.

(1)那么汽車行駛?cè)趟钑r間t(小時)與行駛的平均速度v(千米/小時)之間有怎樣的關系?tv的什么函數(shù)?

(2)若平均速度為100千米/小時,大約需幾個小時跑完全程?

(3)若跑完全程控制在10小時之內(nèi),那么車速應控制在什么范圍內(nèi)?

【答案】(1)t,反比例函數(shù);(2)13小時;(3)平均速度不低于126.2千米/小時.

【解析】試題分析:行程問題.主要是根據(jù)路程=速度時間這個關系式,并結合已知條件列出等量關系式,最后解方程即可求解.如本題中,列出等量關系式結合已知條件,即可解決第(2)、(3).

試題解析:(1)由路程=速度時間,

tv的反比例函數(shù)

(2)千米/時代入上式得

(3)

解得

經(jīng)檢驗是分式方程的根.

:(1)vt的函數(shù)關系式為

(2)當平均速度為100千米/,大約需13小時跑完全程;

(3)當跑完全程控制在10小時之內(nèi),那么車速應控制在126.2(km/h)以上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級社會實踐小組去某商場調(diào)查商品的銷售情況,了解到該商場以每件80元的價格購進了某品牌襯衫500件,并以每件120元的價格銷售了400件,商場準備采取促銷措施,將剩下的襯衫降價銷售.

1)每件襯衫降價多少元時,銷售完這批襯衫正好達到盈利45%的預期目標?

2)在(1)的條件下,某公司給員工發(fā)福利,在該商場促銷錢購買了20件該品牌的襯衫發(fā)給員工,后因為有新員工加入,又要購買5件該襯衫,購買這5件襯衫時恰好趕上該商場進行促銷活動,求該公司購買這25件襯衫的平均價格.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,給出下列的條件,能判斷它是平行四邊形的是( )

A. AB//CD, AD=BCB. B=∠C,∠A=∠D

C. AB=AD, BC=CDD. AB=CD, AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:(﹣2010)0+﹣2sin60°﹣3tan30°+

(2)解方程:x2﹣6x+2=0;

(3)已知關于x的一元二次方程x2﹣mx﹣2=0.

若﹣1是方程的一個根,求m的值和方程的另一根;

證明:對于任意實數(shù)m,函數(shù)y=x2﹣mx﹣2的圖象與x軸總有兩個交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=AFE,EA是∠BEF的平分線,求證:

(1)ABE≌△AFE;

(2)FAD=CDE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l為正比例函數(shù)y=x的圖象,點A1的坐標為(1,0),過點A1x軸的垂線交直線l于點D1,以A1D1為邊作正方形A1B1C1D1;過點C1作直線l的垂線,垂足為A2,交x軸于點B2,以A2B2為邊作正方形A2B2C2D2;過點C2x軸的垂線,垂足為A3,交直線l于點D3,以A3D3為邊作正方形A3B3C3D3,…,按此規(guī)律操作下所得到的正方形AnBnCnDn的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=3x+2的圖象與y軸交于點A,與反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象交于點B,且點B的橫坐標為1.過點A作AC⊥y軸交反比例函數(shù)y=(k≠0)的圖象于點C,連接BC.

(1)求反比例函數(shù)的表達式.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AD于點E,交BC于點F,連接BEDF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BGBI,連接GD,HGD的中點,連接FH,并延長FHED于點J,連接IJIH,IF,IG.試探究線段IHFH之間滿足的關系,并說明理由;

3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足ABAD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點.

(1)寫出點A、點B的坐標;

(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關系式,并求出四邊形PBCA的最大面積;

(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案