【題目】如圖①,△ABC中,∠ABC=45°,AH⊥BC于點(diǎn)H,點(diǎn)D在AH上,且DH=CH,連結(jié)BD.
(1)求證:BD=AC;
(2)將△BHD繞點(diǎn)H旋轉(zhuǎn),得到△EHF(點(diǎn)B,D分別與點(diǎn)E,F(xiàn)對(duì)應(yīng)),連接AE.
①如圖②,當(dāng)點(diǎn)F落在AC上時(shí),(F不與C重合),若BC=4,tanC=3,求AE的長;
②如圖③,當(dāng)△EHF是由△BHD繞點(diǎn)H逆時(shí)針旋轉(zhuǎn)30°得到時(shí),設(shè)射線CF與AE相交于點(diǎn)G,連接GH,試探究線段GH與EF之間滿足的等量關(guān)系,并說明理由.
【答案】
(1)
證明:在Rt△AHB中,∠ABC=45°,
∴AH=BH,
在△BHD和△AHC中,
,
∴△BHD≌△AHC,
∴BD=AC,
(2)
解:①如圖,
在Rt△AHC中,
∵tanC=3,
∴ =3,
設(shè)CH=x,
∴BH=AH=3x,
∵BC=4,
∴3x+x=4,
∴x=1,
∴AH=3,CH=1,
由旋轉(zhuǎn)知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,
∴∠EHA=∠FHC, ,
∴△EHA≌△FHC,
∴∠EAH=∠C,
∴tan∠EAH=tanC=3,
過點(diǎn)H作HP⊥AE,
∴HP=3AP,AE=2AP,
在Rt△AHP中,AP2+HP2=AH2,
∴AP2+(3AP)2=9,
∴AP= ,
∴AE= ;
②由①有,△AEH和△FHC都為等腰三角形,
∴∠GAH=∠HCG=90°,
∴△AGQ∽△CHQ,
∴ ,
∴ ,
∵∠AQC=∠GQE,
∴△AQC∽△GQH,
∴ =sin30°=
【解析】(1)先判斷出AH=BH,再判斷出△BHD≌△AHC即可;(2)①先根據(jù)tanC=3,求出AH=3,CH=1,然后根據(jù)△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;②先判斷出△AGQ∽△CHQ,得到 ,然后判斷出△AQC∽△GQH,用相似比即可.此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定,勾股定理,銳角三角函數(shù)的意義,等腰三角形的判定和性質(zhì),解本題的關(guān)鍵是相似三角形性質(zhì)和判定的運(yùn)用.
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念和相似三角形的判定與性質(zhì),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(0,﹣2),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過A、C兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求反比例函數(shù)與一次函數(shù)的另一個(gè)交點(diǎn)M的坐標(biāo);
(3)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn),連結(jié)OA,OB,過A作AE⊥x軸于點(diǎn)E,交OB于點(diǎn)F,設(shè)點(diǎn)A的橫坐標(biāo)為m.
(1)b=(用含m的代數(shù)式表示);
(2)若S△OAF+S四邊形EFBC=4,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江蘇省無錫市,第25題,10分)操作:“如圖1,P是平面直角坐標(biāo)系中一點(diǎn)(x軸上的點(diǎn)除外),過點(diǎn)P作PC⊥x軸于點(diǎn)C,點(diǎn)C繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)60°得到點(diǎn)Q.”我們將此由點(diǎn)P得到點(diǎn)Q的操作稱為點(diǎn)的T變換.
(1)點(diǎn)P(a,b)經(jīng)過T變換后得到的點(diǎn)Q的坐標(biāo)為 ;若點(diǎn)M經(jīng)過T變換后得到點(diǎn)N(6,),則點(diǎn)M的坐標(biāo)為 .
(2)A是函數(shù)圖象上異于原點(diǎn)O的任意一點(diǎn),經(jīng)過T變換后得到點(diǎn)B.
①求經(jīng)過點(diǎn)O,點(diǎn)B的直線的函數(shù)表達(dá)式;
②如圖2,直線AB交y軸于點(diǎn)D,求△OAB的面積與△OAD的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張.
(1)請(qǐng)用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為4,點(diǎn)P為BC邊上的任意一點(diǎn)(不與點(diǎn)B、C重合),且∠APD=60°,PD交AB于點(diǎn)D.設(shè)BP=x,BD=y,則y關(guān)于x的函數(shù)圖象大致是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車公司調(diào)查陽光中學(xué)學(xué)生對(duì)其產(chǎn)品的了解情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)本次問卷共隨機(jī)調(diào)查了名學(xué)生,扇形統(tǒng)計(jì)圖中m= .
(2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該校有1000名學(xué)生,估計(jì)選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com