【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動,設運動時間為t秒,當t為何值時,以P,Q,C為頂點的三角形與ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
【答案】(1)y=﹣x2+x(2)t=或(3)①M1(4, ),N1(4,﹣);②M2(12,﹣32),N2(4,﹣26);③M3(﹣4,﹣32),N3(4,﹣38).
【解析】試題分析:(1)根據(jù)折疊圖形的軸對稱性,△CED、△CBD全等,首先在Rt△CEO中求出OE的長,進而可得到AE的長;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的長.進一步能確定D點坐標,利用待定系數(shù)法即可求出拋物線的解析式.
(2)由于∠DEC=90°,首先能確定的是∠AED=∠OCE,若以P、Q、C為頂點的三角形與△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在這兩種情況下,分別利用相似三角形的對應邊成比例求出對應的t的值.
(3)由于以M,N,C,E為頂點的四邊形,邊和對角線都沒明確指出,所以要分情況進行討論:
①EC做平行四邊形的對角線,那么EC、MN必互相平分,由于EC的中點正好在拋物線對稱軸上,所以M點一定是拋物線的頂點;
②EC做平行四邊形的邊,那么EC、MN平行且相等,首先設出點N的坐標,然后結合E、C的橫、縱坐標差表示出M點坐標,再將點M代入拋物線的解析式中,即可確定M、N的坐標.
試題解析:方法一:
解:(1)∵四邊形ABCO為矩形,
∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.
由題意,△BDC≌△EDC.
∴∠B=∠DEC=90°,EC=BC=10,ED=BD.
由勾股定理易得EO=6.
∴AE=10﹣6=4,
設AD=x,則BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,
解得,x=3,∴AD=3.
∵拋物線y=ax2+bx+c過點D(3,10),C(8,0),O(0,0)
∴,
解得
∴拋物線的解析式為:y=﹣x2+x.
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,
∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5.
而CQ=t,EP=2t,∴PC=10﹣2t.
當∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,
即,
解得t=.
當∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,
即,
解得t=.
∴當t=或時,以P、Q、C為頂點的三角形與△ADE相似.
(3)假設存在符合條件的M、N點,分兩種情況討論:
①
EC為平行四邊形的對角線,由于拋物線的對稱軸經過EC中點,若四邊形MENC是平行四邊形,那么M點必為拋物線頂點;
則:M(4, );而平行四邊形的對角線互相平分,那么線段MN必被EC中點(4,3)平分,則N(4,﹣);
②EC為平行四邊形的邊,則EC∥MN,EC=,MN設N(4,m),則M(4﹣8,m+6)或M(4+8,m﹣6);
將M(﹣4,m+6)代入拋物線的解析式中,得:m=﹣38,此時 N(4,﹣38)、M(﹣4,﹣32);
將M(12,m﹣6)代入拋物線的解析式中,得:m=﹣26,此時 N(4,﹣26)、M(12,﹣32);
綜上,存在符合條件的M、N點,且它們的坐標為:
①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4, ),N3(4,﹣).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度數(shù);(2)若∠ACB為α,則∠ECD的度數(shù)能否用含α的式子來表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有4個黑球、2個白球,每個球除顏色外都相同,從中任意摸出3個球,下列事件為必然事件的是( )
A.至少有1個球是黑球
B.至少有1個球是白球
C.至少有2個球是黑球
D.至少有2個球是白球
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會準備調查七年級敘述參加“繪畫類”、“書法類”、“樂器類”四類校本課程的人數(shù),在全校進行隨機抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了如圖兩幅統(tǒng)計圖(信息尚不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調查了多少名同學?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中樂器部分的圓心角的度數(shù);
(3)如果該校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的25名學生,估計書法興趣小組至少需要準備多少名教師?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】天上一顆顆閃爍的星星給我們以“_____”的形象;中國武術中有“槍扎一條線,棍掃一大片”的說法,這句話給我們以“_____”的形象;賓館里旋轉的大門給我們以“_____”的形象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一直角三角板與兩邊平行的紙條如圖所示放置,下列結論:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com