【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點(diǎn)D,∠ABD=∠ACB.
(1)求證:AB是圓的切線(xiàn);
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4 ,tan∠AEB=,AB∶BC=2∶3,求圓的直徑.
【答案】(1)詳見(jiàn)解析;(2)10.
【解析】
試題分析:(1)根據(jù)∠ABD=∠ACB和∠ACB+∠DBC= 90°可得∠ABC=90°,然后根據(jù)切線(xiàn)的判定定理可判斷AB是圓的切線(xiàn);(2) 根據(jù)BE=4 ,tan∠AEB=先求出AB的長(zhǎng),再根據(jù)AB∶BC=2∶3求出BC的長(zhǎng),即得直徑.
試題解析:(1)證明:∵BC是直徑,∴∠BDC=90°,∴∠ACB+∠DBC= 90°.
又∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°,∴AB⊥BC.
又∵點(diǎn)B在圓上,∴AB是圓的切線(xiàn).
(2)解:在Rt△AEB中,tan∠AEB=,∴=,即AB=BE=×4=.
∵AB∶BC=2∶3,∴BC=AB=×=10.
∴圓的直徑為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC 的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫(huà)圖和解答下列問(wèn)題:
(1)以A點(diǎn)為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△AB1C1,畫(huà)出△AB1C1.
(2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2.
(3)作出點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)P. 若點(diǎn)P向右平移x個(gè)單位長(zhǎng)度后落在△A2B2C2的內(nèi)部(不含落在△A2B2C2的邊上),請(qǐng)直接寫(xiě)出x的取值范圍.
(提醒:每個(gè)小正方形邊長(zhǎng)為1個(gè)單位長(zhǎng)度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)沿海某市企業(yè)計(jì)劃投入800萬(wàn)元購(gòu)進(jìn)A、B兩種小型海水淡化設(shè)備,這兩種設(shè)備每臺(tái)的購(gòu)入價(jià)、每臺(tái)設(shè)備每天可淡化的海水量及淡化率如下表:
每臺(tái)購(gòu)入價(jià)(萬(wàn)元) | 每臺(tái)每天可淡化海水量(立方米) | 淡化率 | |
A型 | 20 | 250 | 80% |
B型 | 25 | 400 | 75% |
(1)若該企業(yè)每天能生產(chǎn)9000立方米的淡化水,求購(gòu)進(jìn)A型、B型設(shè)備各幾臺(tái)?
(2)在(1)的條件下,已知每淡化1立方米海水所需的費(fèi)用為1.5元,政府補(bǔ)貼0.3元.企業(yè)將淡化水以3.2元/立方米的價(jià)格出售,每年還需各項(xiàng)支出61萬(wàn)元.按每年實(shí)際生產(chǎn)300天計(jì)算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個(gè)位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四舍五入法把3.8963精確到百分位得到的近似數(shù)是( )
A. 3.896 B. 3.900 C. 3.9 D. 3.90
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在射線(xiàn)BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6,O是射線(xiàn)BD上一點(diǎn),⊙O與BA,BC都相切,與BO的延長(zhǎng)線(xiàn)交于點(diǎn)M.過(guò)M作EF⊥BD交線(xiàn)段BA(或射線(xiàn)AD)于點(diǎn)E,交線(xiàn)段BC(或射線(xiàn)CD)于點(diǎn)F.以EF為邊作矩形EFGH,點(diǎn)G,H分別在圍成菱形的另外兩條射線(xiàn)上.
(1)求證:BO=2OM.
(2)設(shè)EF>HE,當(dāng)矩形EFGH的面積為24時(shí),求⊙O的半徑.
(3)當(dāng)HE或HG與⊙O相切時(shí),求出所有滿(mǎn)足條件的BO的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com