精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC△BDE都是等邊三角形,AB、D三點共線.下列結論:①AECD;②BFBG;③△BFG是等邊三角形;④∠AHC60°.其中正確的有__________(只填序號).

【答案】①②③④

【解析】

由題中條件可得△ABE≌△CBD,得出對應邊、對應角相等,進而得出△BGD≌△BFE,△ABF≌△CGB,再由邊角關系即可求解題中結論是否正確,進而可得出結論.

解:∵△ABC與△BDE為等邊三角形,
AB=BCBD=BE,∠ABC=DBE=60°,
∴∠ABE=CBD,
在△ABE和△CBD中,

,

∴△ABE≌△CBDSAS),
AE=CD,∠BDC=AEB,
又∵∠DBG=FBE=60°,
∴在△BGD和△BFE中,

,

∴△BGD≌△BFEASA),
BG=BF,∠BFG=BGF=60°,
∴△BFG是等邊三角形,
FGAD

在△ABF和△CGB中,

,

∴△ABF≌△CGBSAS),
∴∠BAF=BCG,
∴∠CAF+ACB+BCD=CAF+ACB+BAF=60°+60°=120°,
∴∠AHC=60°,

∴①②③④都正確.
故答案為:①②③④.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.

(1)求甲、乙兩種商品每件的進價分別是多少元?

(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處;

(1)求證:B′E=BF;
(2)設AE=a,AB=b,BF=c,試猜想a,b,c之間的一種關系,并給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一個等腰直角三角形按圖示方式依次翻折,則下列說法正確的個數有(

①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周長等于BC的長.

A. 0個; B. 1個; C. 2個; D. 3.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了保護環(huán)境,某化工廠一期工程完成后購買了3臺甲型和2臺乙型污水處理設備,共花費資金54萬元,且每臺乙型設備的價格是每臺甲型設備價格的75%.

1)請你計算每臺甲型設備和每臺乙型設備的價格各是多少元?

2)今年該廠二期工程即將完成,產生的污水將大大增加,于是該廠決定再購買甲、乙兩種型號設備共8臺用于二期工程的污水處理,預算本次購買資金不超過84萬元;實際運行中發(fā)現,每臺甲型設備每月能處理污水200噸,每臺乙型設備每月能處理污水160噸,預計二期工程完成后每月將產生不少于1300噸污水,請你求出用于二期工程的污水處理設備的所有購買方案.

3)經測算:每年用于每臺甲型設備的各種維護費和電費為1萬元,每年用于每臺乙型設備的各種維護費和電費為15萬元.在(2)中的方案中,哪種購買方案使得設備的各種維護費和電費總費用最低?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABC=ADC=90°,對角線AC,BD交于點O,DE平分∠ADCBC于點E,連接OE.

(1)求證:四邊形ABCD是矩形;

(2)若AB=2,求OEC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】填表:

相反數等于它本身

絕對值等于它本身

倒數等于它本身

平方等于它本身

立方等于它本身

平方根等于它本身

算術平方根等于它本身

立方根等于它本身

最大的負整數

絕對值最小的數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,AC為對角線,點EAC上一點,連接EB,ED.

(1)求證:△BEC≌△DEC

(2)延長BEAD于點F,當∠BED120°時,求∠EFD的度數.

查看答案和解析>>

同步練習冊答案