【題目】如圖,小紅想用一條彩帶纏繞易拉罐,正好從A點繞到正上方B點共四圈,已知易拉罐底面周長是12 cm,高是20 cm,那么所需彩帶最短的是(  )

A. 13 cm B. 4cm C. 4cm D. 52 cm

【答案】D

【解析】

本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.

如圖,

由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個長方形并排后的長方形的對角線長,設(shè)彩帶最短長度為xcm,

∵∵易拉罐底面周長是12cm,高是20cm,

x2=(12×4)2+202x2=(12×4)2+202,

所以彩帶最短是52cm

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從超市出發(fā),向東走了3千米到達A,繼續(xù)向東走25千米到達B,然后向西走了10千米到達C,最后回到超市。

(1)以超市為原點,以向東的方向為正方向,1個單位長度表示1千米,畫出數(shù)軸并在數(shù)軸上表示出A地、B地、C地的位置;

(2)C地距離A地多遠?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.5,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形中,過其中的一個頂點的直線如果能把這個等腰三角形分成兩個小的等腰三角形,我們稱這種等腰三角形為少見的三角形,這條直線稱為分割線,下面我們來研究這類三角形.

1)等腰直角三角形是不是少見的三角形?

2)已知如圖所示的鈍角三角形是一個少見的三角形,請你畫出分割線的大致位置,并求出頂角的度數(shù);

3)銳角三角形中有沒有少見的三角形?如果沒有,請說明理由;如果有,請畫出圖形并求出頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以△ABC的兩邊AB、AC為邊向外作等邊△ABD和等邊△ACE,DC、BE相交于點O.

(1)求證:DC=BE;

(2)求∠BOC的度數(shù);

(3)當∠BAC的度數(shù)發(fā)生變化時,∠BOC的度數(shù)是否變化?若不變化,請求出∠BOC的度數(shù);若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一張等腰直角三角形彩色紙,將斜邊上的高線四等分,然后裁出三張寬度相等的長方形紙條,若恰好可以用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),則這張彩色紙的面積與鑲嵌所得的作品(如圖2)面積之比為( )

A.2:3
B.3:4
C.1:1
D.4:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國道路交通管理條例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m,過了2 s,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,最適合采用全面調(diào)查方式的是(  )

A.對同批次燈泡的使用壽命的調(diào)查

B.對乘坐飛機的旅客是否攜帶違禁物品的調(diào)查

C.對一個社區(qū)每天丟棄塑料袋數(shù)量的調(diào)查

D.對中央電視臺“戰(zhàn)疫情”欄目收視率的調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上的一點,AD=BD,ADC=80°.

(1)求∠B的度數(shù);

(2)若∠BAC=70°,判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩組數(shù)據(jù):98,99,99,10098.5,99,99,99.5,則關(guān)于以下統(tǒng)計量說法不正確的是(  )

A. 平均數(shù)相等

B. 中位數(shù)相等

C. 眾數(shù)相等

D. 方差相等

查看答案和解析>>

同步練習冊答案