精英家教網 > 初中數學 > 題目詳情
某超市計劃上兩個新項目:
項目一:銷售A種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在正比例函數關系:y=kx.當投資5萬元時,可獲得利潤2萬元;
項目二:銷售B種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在二次函數關系:y=ax2+bx.當投資4萬元時,可獲得利潤3.2萬元;當投資2萬元時,可獲得利潤2.4萬元.
(1)請分別求出上述的正比例函數表達式和二次函數表達式;
(2)如果超市同時對A、B兩種商品共投資12萬元,請你設計一個能獲得最大利潤的投資方案,并求出按此方案獲得的最大利潤是多少?
【答案】分析:(1)首先利用已知條件和待定系數法可以分別求出正比例函數表達式和二次函數表達式;
(2)設投資B種商品x萬元,則投資A種商品(12-x)萬元,然后根據已知條件可以列出利潤W關于x的二次函數,接著利用二次函數的性質即可求出獲得最大利潤的投資方案.
解答:解:(1)∵銷售A種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在正比例函數關系:y=kx.
當投資5萬元時,可獲得利潤2萬元;
∴yA=0.4x;
∵銷售B種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在二次函數關系:y=ax2+bx.
當投資4萬元時,可獲得利潤3.2萬元;
當投資2萬元時,可獲得利潤2.4萬元.
,
∴a=-0.2,b=1.6,
∴yB=-0.2x2+1.6x;
(2)設投資B種商品x萬元,
則投資A種商品(12-x)萬元.
W=-0.2x2+1.6x+0.4(12-x)
=-0.2(x-3)2+6.6.
∴當x=3時,W取最大值,
∴投資A、B兩種商品分別為9、3萬元可獲得最大利潤6.6萬元.
點評:此題主要考查了二次函數的應用,解題的關鍵是正確把握題目的數量關系,然后根據數量關系列出函數關系式,利用函數關系式即可解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某超市計劃上兩個新項目:
項目一:銷售A種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在正比例函數關系:y=kx.當投資5萬元時,可獲得利潤2萬元;
項目二:銷售B種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在二次函數關系:y=ax2+bx.當投資4萬元時,可獲得利潤3.2萬元;當投資2萬元時,可獲得利潤2.4萬元.
(1)請分別求出上述的正比例函數表達式和二次函數表達式;
(2)如果超市同時對A、B兩種商品共投資12萬元,請你設計一個能獲得最大利潤的投資方案,并求出按此方案獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:2013年河南省中考數學模擬試卷(二)(解析版) 題型:解答題

某超市計劃上兩個新項目:
項目一:銷售A種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在正比例函數關系:y=kx.當投資5萬元時,可獲得利潤2萬元;
項目二:銷售B種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在二次函數關系:y=ax2+bx.當投資4萬元時,可獲得利潤3.2萬元;當投資2萬元時,可獲得利潤2.4萬元.
(1)請分別求出上述的正比例函數表達式和二次函數表達式;
(2)如果超市同時對A、B兩種商品共投資12萬元,請你設計一個能獲得最大利潤的投資方案,并求出按此方案獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:2013年4月中考數學模擬試卷(2)(解析版) 題型:解答題

某超市計劃上兩個新項目:
項目一:銷售A種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在正比例函數關系:y=kx.當投資5萬元時,可獲得利潤2萬元;
項目二:銷售B種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在二次函數關系:y=ax2+bx.當投資4萬元時,可獲得利潤3.2萬元;當投資2萬元時,可獲得利潤2.4萬元.
(1)請分別求出上述的正比例函數表達式和二次函數表達式;
(2)如果超市同時對A、B兩種商品共投資12萬元,請你設計一個能獲得最大利潤的投資方案,并求出按此方案獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:2011年河南省中招考試第二次模擬考試數學試卷(解析版) 題型:解答題

某超市計劃上兩個新項目:
項目一:銷售A種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在正比例函數關系:y=kx.當投資5萬元時,可獲得利潤2萬元;
項目二:銷售B種商品,所獲得利潤y(萬元)與投資金額x(萬元)之間存在二次函數關系:y=ax2+bx.當投資4萬元時,可獲得利潤3.2萬元;當投資2萬元時,可獲得利潤2.4萬元.
(1)請分別求出上述的正比例函數表達式和二次函數表達式;
(2)如果超市同時對A、B兩種商品共投資12萬元,請你設計一個能獲得最大利潤的投資方案,并求出按此方案獲得的最大利潤是多少?

查看答案和解析>>

同步練習冊答案