【題目】設(shè)雙曲線y=(k>0)與直線y=x交于A\B兩點(點A在第三象限),將雙曲線在第一象限的一支沿射線BA的方向平移,使其經(jīng)過點A,將雙曲線在第三象限的一支沿射線AB的方向平移,使其經(jīng)過點B,平移后的兩條曲線相交于P、Q兩點,此時我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的“眸”,PQ為雙曲線的“眸徑“,當(dāng)雙曲線y=(k>0)的眸徑為6時,k的值為( 。
A.B.2C.D.3
【答案】A
【解析】
以PQ為邊,作矩形PQQ′P′交雙曲線于點P′、Q′,聯(lián)立直線AB及雙曲線解析式成方程組,通過解方程組可求出點A、B的坐標(biāo),由PQ的長度可得出點P的坐標(biāo)(點P在直線y=x上),由圖形的對稱性結(jié)合點A、B和P的坐標(biāo)可得出點P′的坐標(biāo),再利用反比例函數(shù)圖象上點的坐標(biāo)特征即可得出關(guān)于k的一元一次方程,解之即可得出結(jié)論.
以PQ為邊,作矩形PQQ′P′交雙曲線于點P′、Q′,如圖所示.
聯(lián)立直線AB及雙曲線解析式成方程組,,
解得:,,
∴點A的坐標(biāo)為(﹣,﹣),點B的坐標(biāo)為(,).
∵PQ=6,
∴OP=3,點P的坐標(biāo)為(﹣,).
根據(jù)圖形的對稱性可知:PP′=AB=QQ′,
∴點P′的坐標(biāo)為(﹣+2,+2).
又∵點P′在雙曲線y=上,
∴(﹣+2)(+2)=k,
解得:k=.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-(2m-1)x+m2-m(m是常數(shù))
(1)當(dāng)m=2時,求二次函數(shù)圖象與x軸的交點;
(2)若A(n-3,n2+2),B(-n+1,n2+2)是該二次函數(shù)圖象上的兩個不同點,求m的值和二次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是500件,而銷售單價每上漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>30),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x(x>30) |
銷售量y(件) |
|
銷售玩具獲得利潤w(元) |
|
(2)在第(1)問的條件下,若商場獲得了8750元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?
(3)在第(1)問的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于32元,且商場要完成不少于400件的銷售任務(wù),求:商場銷售該品牌玩具獲得最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線,且經(jīng)、兩點.
求拋物線的解析式;
在拋物線的對稱軸上,是否存在點,使它到點的距離與到點的距離之和最小,如果存在求出點的坐標(biāo),如果不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.
(1)求點M到地面的距離;
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時,貨車需與護(hù)欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,分別是、的中點,分別是對角線上的四等分點,順次連接.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)滿足____ 條件時,四邊形是菱形;
(3)若,
①探究四邊形的形狀,并說明理由;
②當(dāng)時,直接寫出四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售40件,每件盈利50元,為了減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.
(1)若某天該商品每件降價a元,當(dāng)天可賣多少件?
(2)在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達(dá)到2400元?
(3)每件商品降價多少元時,商場日盈利最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com