【題目】2019·信陽一模)如圖,銳角三角形ABC,BC=6,BC邊上的高為4,直線MN交邊AB于點M,AC于點N,MNBC,MN為邊作正方形MNPQ,設(shè)其邊長為x(x>0),正方形MNPQ與△ABC公共部分的面積為y,yx的函數(shù)圖象大致是(  )

A.B.C.D.

【答案】D

【解析】

根據(jù)題意畫出符合的兩種情況:分別求出函數(shù)的解析式,再判斷圖象即可.

解:當PQ在邊BC上時,由題意知,MNBC,

AAHBCH,交MNG,

,

,解得:x=2.4,

0<x≤2.4時,正方形MNQP在△ABC的內(nèi)部,

y=x2,為開口朝上的拋物線,

2.4<x≤4時,過AAHBCH,交MNG,

,解得:AG=x,

GH=4-x

y=MN·GH=x(4-x),為開口朝下的拋物線,對稱軸為:x=3

即選項D符合題意,即答案為:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解初一年級學生每學期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調(diào)查了部分初一學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖和圖,請根據(jù)圖中提供的信息,回答下列問題:

(I)本次隨機抽樣調(diào)查的學生人數(shù)為   ,圖中的m的值為   ;

(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(III)若該區(qū)初一年級共有學生2500人,請估計該區(qū)初一年級這個學期參加綜合實踐活動的天數(shù)大于4天的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題探究)如圖1,,直線,垂足為,交于點,點到直線的距離為2,點的距離為1,,,則的最小值是______;(提示:將線段沿方向平移1個單位長度即可解決,如圖2所示.)

(關(guān)聯(lián)運用)如圖3,在等腰和等腰中,,在直線上,,連接,則的最小值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學生進行調(diào)查(每名學生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據(jù)以上信息解決下列問題:

(1) ;

(2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數(shù)為 ;

(3)從選航模項目的名學生中隨機選取名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的名學生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點G在邊DC的延長線上,AG交邊BC于點E,交對角線BD于點F.

(1)求證:AF2=EFFG;

(2)如果EF=,F(xiàn)G=,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店準備購進A、B兩種品牌的文具袋進行銷售,若購進A品牌文具袋和B品牌文具袋各5個共花費120元,購進A品牌文具袋3個和B品牌文具袋4個共花費88元.

1)求購進A品牌文具袋和B品牌文具袋的單價;

2)若該文具店購進了A,B兩種品牌的文具袋共100個,其中A品牌文具袋售價為12元,B品牌文具袋售價為23元,設(shè)購進A品牌文具袋x個,獲得總利潤為w元.

①求w關(guān)于x的函數(shù)關(guān)系式;

②要使銷售文具袋的利潤最大,且所獲利潤不低于進貨價格的45%,請你幫該文具店設(shè)計一個進貨方案,并求出其所獲利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關(guān)系式為為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關(guān)系如下表:

時間第

1

2

3

80

銷售單價(元/

49. 5

49

48. 5

10

1)寫出銷售單價(元/)與時間第天之間的函數(shù)關(guān)系式;

2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BC2AB,對角線相交與O點,過C點作CEBDBDE點,HBC中點,連接AHBDG點,交EC的延長線于F點,下列4個結(jié)論:EHABABG=∠HEC;ABG≌△HEC;CFBD.正確的結(jié)論是( 。

A.①②④B.①④C.③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc0;②0;③acb+1=0;④2a+b=0其中正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案