D
分析:首先要證明△BCF≌△CBE(SAS),得出BF=CE,再證明△ABF≌△ACE(SAS),得出∠BAD=∠CAD,可以證明AD⊥BC,所以△ABD≌△ACD(HL),△AOE≌△AOF(SAS),△AOB≌△AOC(SAS),得出OE=OF,BO=CO,所以△BOE≌△COF(SSS),△BOD≌△COD(HL),所以一共七對.
解答:∵AB=AC,AE=AF
∴∠ABC=∠ACB,BE=CF
∵BC是公共邊
∴△BCF≌△CBE
∴BF=CE
∵AE=AF,AB=AC
∴△ABF≌△ACF
∴∠BAD=∠CAD
∴AD⊥BC,BD=CD
∴△ABD≌△ACD(HL)
∵∠BAD=∠CAD.AE=AF,AD=AD
∴△AOE≌△AOF
∴OE=OF
∴BO=CO,BE=CF
∴△BOE≌△COF
∵BO=CO,BD=CD,OD是公共邊
∴△BOD≌△COD
∵AB=AC,AO=AO,∠BAO=∠CAO,
∴△AOB≌△AOC
∴一共七對
故選D.
點評:本題考查了三角形全等的判定與性質,關鍵是找出第一對全等三角形,再利用性質證明另一對三角形全等.