(2006•防城港)如圖,下列條件不能判定直線a∥b的是( )

A.∠1=∠2
B.∠1=∠3
C.∠1+∠4=180°
D.∠2+∠4=180°
【答案】分析:根據(jù)平行線的判定定理進(jìn)行解答.
解答:解:A、∵∠1=∠2,
∴a∥b(內(nèi)錯角相等,兩直線平行);
B、∵∠1=∠3,
∴a∥b(同位角相等,兩直線平行);
C、∠1+∠4=180°與a,b的位置無關(guān);
D、∵∠2+∠4=180°,
∴a∥b(同旁內(nèi)角互補(bǔ),兩直線平行).
故選C.
點評:正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補(bǔ)關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案