【題目】如圖,已知直線l:y=﹣1和拋物線L:y=ax2+bx+c(a≠0),拋物線L的頂點(diǎn)為原點(diǎn),且經(jīng)過點(diǎn)A(2,),直線y=kx+1與y軸交于點(diǎn)F,與拋物線L交于點(diǎn)B(x1,y1),C(x2,y2),且x1<x2.
(1)求拋物線L的解析式;
(2)點(diǎn)P是拋物線L上一動點(diǎn).
①以點(diǎn)P為圓心,PF為半徑作⊙P,試判斷⊙P與直線l的位置關(guān)系,并說明理由;
②若點(diǎn)Q(2,3),當(dāng)|PQ﹣PF|的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)求證:無論k為何值,直線l總是與以BC為直徑的圓相切.
【答案】(1)y=x2;(2)①點(diǎn)⊙P與直線l的位置關(guān)系為相切;理由見解析;②點(diǎn)P的坐標(biāo)為(2,3);(3)見解析.
【解析】
(1)拋物線的表達(dá)式為:y=ax2,將點(diǎn)A坐標(biāo)代入上式,即可求解;
(2)①點(diǎn)F(0,1),設(shè):點(diǎn)P(m,m2),則PF=m2+1,而點(diǎn)P到直線l的距離為:m2+1,即可求解;②當(dāng)點(diǎn)P、Q、F三點(diǎn)共線時(shí),|PQ-PF|最小,即可求解;
(3)x2-x1= =4,設(shè)直線BC的傾斜角為α,則tanα=k,則cosα= ,則BC= =4(k2+1),則BC=2k2+2,設(shè)BC的中點(diǎn)為M(2k,2k2+1),則點(diǎn)M到直線l的距離為:2k2+2,即可求解.
(1)拋物線的表達(dá)式為:y=ax2,
將點(diǎn)A坐標(biāo)代入上式得:=a(2)2,解得:a=,
故拋物線的表達(dá)式為:y=x2①;
(2)①點(diǎn)F(0,1),設(shè):點(diǎn)P(m,m2),
則PF=m2+1=m2+1,
而點(diǎn)P到直線l的距離為:m2+1,
則⊙P與直線l的位置關(guān)系為相切;
②當(dāng)點(diǎn)P、Q、F三點(diǎn)共線時(shí),|PQ-PF|最小,
將點(diǎn)FQ的坐標(biāo)代入一次函數(shù)表達(dá)式:y=kx+b并解得:
直線FQ的函數(shù)表達(dá)式為:y=x+1…②,
聯(lián)立①②并解得:x=2,
故點(diǎn)P的坐標(biāo)為:(2,3);
(3)將拋物線的表達(dá)式與直線y=kx+1聯(lián)立并整理得:
x2-4kx-4=0,
則x1+x2=4k,x1x2=-4,
則y1+y2=k(x1+x2)+2=4k2+2,
則x2-x1==4,
設(shè)直線BC的傾斜角為α,則tanα=k,則cosα=,則BC==4(k2+1),則BC=2k2+2,
設(shè)BC的中點(diǎn)為M(2k,2k2+1),則點(diǎn)M到直線l的距離為:2k2+2,
故直線l總是與以BC為直徑的圓相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)準(zhǔn)各去濕地公園開展社會實(shí)踐活動,學(xué)校給出A:十八彎,B:長廣溪,C:九里河,D:貢湖灣,共四個(gè)目的地.為了解學(xué)生最喜歡哪一個(gè)目的地,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)査,并將調(diào)査結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請回答下列問題:
(1)這次被調(diào)査的學(xué)生共有 人.
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)扇形統(tǒng)計(jì)圖中D項(xiàng)目對立的扇形的圓心角度數(shù)是 °.
(4)已知該校學(xué)生2400人,請根據(jù)調(diào)査結(jié)果估計(jì)該校最喜歡去長廣溪濕地公園的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,折疊矩形ABCD,使點(diǎn)B落在對角線AC上的點(diǎn)F處,若BC=8,AB=6,則線段CE的長度是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家限購以來,二手房和新樓盤的成交量迅速下降.據(jù)統(tǒng)計(jì),某市限購前某季度二手房和新樓盤成交量為9500套;限購后,同一季度二手房和新樓盤的成交量共4425套.其中二手房成交量比限購前減少55%,新樓盤成交量比限購前減少52%.
(1)問限購后二手房和新樓盤各成交多少套?
(2)在成交量下跌的同時(shí),房價(jià)也大幅跳水.某樓盤限購前均價(jià)為12000元/m2,限購后,房價(jià)經(jīng)過二次下調(diào)后均價(jià)為9720元/m2,求平均每次下調(diào)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△OAB置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P是Rt△OAB內(nèi)切圓的圓心.將Rt△OAB沿y軸的正方向作無滑動滾動.使它的三邊依次與x軸重合.第一次滾動后,圓心為P1,第二次滾動后圓心為P2…依次規(guī)律,第2019次滾動后,Rt△OAB內(nèi)切圓的圓心P2019的坐標(biāo)是( )
A.(673,1)B.(674,1)C.(8076,1)D.(8077,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級一班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | 1 |
根據(jù)圖表提供的信息,解答下列問題:
(1)九年級一班有多少名學(xué)生?
(2)請補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出 2 名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的 2 人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為評估九年級學(xué)生的學(xué)習(xí)成績狀況,以應(yīng)對即將到來的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答下列問題:
(1)求本中學(xué)成績類別為“中”的人數(shù);
(2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń夥匠獭?/span>
(1)4(x-3) =36
(2)x2-4x+1=0.
(3)-7x+6=0
(4)
(5)(y-1)2+2y(1-y)=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是實(shí)驗(yàn)室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,擺動臂可繞點(diǎn)旋轉(zhuǎn),擺動臂可繞點(diǎn)旋轉(zhuǎn), ,.
(1)在旋轉(zhuǎn)過程中,當(dāng)為同一直角三角形的頂點(diǎn)時(shí),的長為______________.
(2)若擺動臂順時(shí)針旋轉(zhuǎn)90°,點(diǎn)的位置由外的點(diǎn)轉(zhuǎn)到其內(nèi)的點(diǎn)處,連結(jié),如圖2,此時(shí),,的長為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com