如圖,矩形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,1),C(2,3),D(1,3).
(1)將矩形各頂點(diǎn)的橫、縱坐標(biāo)都乘以2,寫(xiě)出各對(duì)應(yīng)點(diǎn)A1B1C1D1的坐標(biāo);順次連接A1B1C1D1,畫(huà)出相應(yīng)的圖形.
(2)求矩形A1B1C1D1與矩形ABCD的面積的比 _________ 
(3)將矩形ABCD的各頂點(diǎn)的橫、縱坐標(biāo)都擴(kuò)大n倍(n為正整數(shù)),得到矩形AnBnCnDn,則矩形AnBnCnDn與矩形ABCD的面積的比為 _________ 

(1)畫(huà)圖見(jiàn)解析;(2)4:1;(3)(n+1)2:1.

解析試題分析:(1)根據(jù)題意得出對(duì)應(yīng)點(diǎn)坐標(biāo)進(jìn)而畫(huà)出圖形;
(2)利用已知圖形求出兩圖形面積,進(jìn)而得出其面積比;
(3)利用橫縱坐標(biāo)變化得出相似比,進(jìn)而得出矩形AnBnCnDn與矩形ABCD的面積的比.
試題解析:(1)如圖所示:

A1(2,2),B1(4,2),C1(4,6),D1(2,6);
(2)∵S矩形ABCD=1×2=2,S矩形A1B1C1D1=2×4=8,
∴矩形A1B1C1D1與矩形ABCD的面積的比:4:1;
(3)∵將矩形ABCD的各頂點(diǎn)的橫、縱坐標(biāo)都擴(kuò)大n倍(n為正整數(shù)),得到矩形AnBnCnDn,
∴兩圖形相似比為:(n+1):1,
∴矩形AnBnCnDn與矩形ABCD的面積的比為:(n+1)2:1.
考點(diǎn):作圖-位似變換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在邊長(zhǎng)為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在6×8網(wǎng)格圖中,每個(gè)小正方形邊長(zhǎng)均為1,點(diǎn)O和△ABC的頂點(diǎn)均與小正方形的頂點(diǎn)重合.

(1)以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′和△ABC位似,且位似比為1∶2;
(2)連接(1)中的AA′,求四邊形AA′C′C的周長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在13×13的網(wǎng)格圖中,已知△ABC和點(diǎn)M(1,2).
(1)以點(diǎn)M為位似中心,位似比為2,畫(huà)出△ABC的位似圖形△A′B′C′;
(2)寫(xiě)出△A′B′C′的各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,BC是半⊙O的直徑,點(diǎn)P是半圓弧的中點(diǎn),點(diǎn)A是弧BP的中點(diǎn),AD⊥BC于D,連結(jié)AB、PB、AC,BP分別與AD、AC相交于點(diǎn)E、F.
(1)BE與EF相等嗎?并說(shuō)明理由;
(2)小李通過(guò)操作發(fā)現(xiàn)CF=2AB,請(qǐng)問(wèn)小李的發(fā)現(xiàn)是否正確,若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)寫(xiě)出CF與AB正確的關(guān)系式.
(3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E、F分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點(diǎn)G.
(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),連接BM、ED、MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF=∠BAF,AF=AD,請(qǐng)你判斷線段FM和FN之間的數(shù)量關(guān)系,并證明你的判斷是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在□ABCD中,E是AB的中點(diǎn),ED和AC相交于點(diǎn)F,過(guò)點(diǎn)F作FG∥AB,交AD于點(diǎn)G.

(1)求證:AB=3FG;
(2)若AB:AC=:,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案