【題目】在平面直角坐標(biāo)系中,正方形ABCD 的位置如圖所示,點(diǎn)A的坐標(biāo)為(10),點(diǎn)D的坐標(biāo)為(0,2),延長(zhǎng)CBx軸于點(diǎn)A1,作正方形A1CC1B1,延長(zhǎng)C1B1x軸于點(diǎn)A2,作正方形A2C1C2B2,,按照這樣的規(guī)律作正方形,則點(diǎn)B2019的縱坐標(biāo)為_______

【答案】

【解析】

先根據(jù)兩對(duì)對(duì)應(yīng)角相等的三角形相似,證明△AOD和△A1BA相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例可以得到AB2A1B,所以正方形A1B1C1C的邊長(zhǎng)等于正方形ABCD邊長(zhǎng)的,以此類(lèi)推,后一個(gè)正方形的邊長(zhǎng)是前一個(gè)正方形的邊長(zhǎng)的,再過(guò)B點(diǎn)作BHx軸,過(guò)B1點(diǎn)作B1H1x軸,根據(jù)正方形的性質(zhì)證明△AOD△BHA,求出B點(diǎn)坐標(biāo),再根據(jù)△ABH∽△A1B1H1,得到B1縱坐標(biāo)與B點(diǎn)縱坐標(biāo)的關(guān)系,以此類(lèi)推,即可得到點(diǎn)B2019的縱坐標(biāo)

如圖,∵四邊形ABCD是正方形,

∴∠ABC=∠BAD90ABBC,

∴∠ABA190,∠DAO+∠BAA190,

又∵在坐標(biāo)平面內(nèi),∠DAO+∠ADO90

∴∠ADO=∠BAA1,

在△AOD和△A1BA中,

AOD=∠ABA190

ADO=∠BAA1,

∴△AOD∽△A1BA

ODAOABA1B2,

BC2A1B

A1CBC,

以此類(lèi)推A2C1A1C,A3C2A2C1,…,

即后一個(gè)正方形的邊長(zhǎng)是前一個(gè)正方形的邊長(zhǎng)的倍,

過(guò)B點(diǎn)作BHx軸,

在△AOD△BHA

△AOD△BHA

BH=AO=1

作過(guò)B1點(diǎn)作B1H1x軸,

BHB1H1,

∴△ABH∽△A1B1H1

作過(guò)B2點(diǎn)作B2H2x軸,

同理△A1B1H1∽△A2B2H2,

以此類(lèi)推:

B2019H2019=

∴點(diǎn)B2019的縱坐標(biāo)為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢市霧霾天氣嚴(yán)重,環(huán)境治理已刻不容緩,武漢市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售某種家用空氣凈化器,其進(jìn)價(jià)是200/臺(tái),經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái),若供應(yīng)商規(guī)定這種空氣凈化器售價(jià)不低于330/臺(tái),代理銷(xiāo)售商每月要完成不低于450臺(tái)的銷(xiāo)售任務(wù).

1)試確定月銷(xiāo)售量(臺(tái))與售價(jià)(元/臺(tái))之間的函數(shù)關(guān)系式.

2)當(dāng)售價(jià)(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)(元)最大?最大利潤(rùn)是多少?

3)當(dāng)售價(jià)(元/臺(tái))滿足什么條件時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)(元)不低于70000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示、則下列結(jié)論:①abc0;②a5b+9c0;③3a+c0,正確的是(  )

A.①③B.①②C.①②③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖⊙O的直徑AB10cm,弦BC6cm,∠ACB的平分線交⊙OD,交ABE,PAB延長(zhǎng)線上一點(diǎn),且PCPE

(l)求證:PC是⊙O的切線;

(2)AC、AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限內(nèi)交于AB兩點(diǎn),點(diǎn)A的縱坐標(biāo)為4,點(diǎn)B的坐標(biāo)為(3,2),連接0AOB

1)求反比例函數(shù)的解析式;

2)點(diǎn)M是線段AB上的一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),過(guò)點(diǎn)MMEx軸于點(diǎn)E,作MNy軸為于點(diǎn)N,求四邊形MEON 的最大面積;

3)將直線y=kx+b向下平移n個(gè)單位長(zhǎng)度,若直線與反比例函數(shù)在第一象限內(nèi)的圖象只有一個(gè)交點(diǎn),求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y x 0 的圖象經(jīng)過(guò)點(diǎn) A2,3 ,直線y ax y 與反比例函數(shù) y x 0 分別交于點(diǎn) B,C兩點(diǎn).

1)直接寫(xiě)出 k 的值

2)由線段 OB,OC和函數(shù) y x 0 B,C 之間的部分圍成的區(qū)域(不含邊界) W

當(dāng) A點(diǎn)與 B點(diǎn)重合時(shí),直接寫(xiě)出區(qū)域 W 內(nèi)的整點(diǎn)個(gè)數(shù)

若區(qū)域 W內(nèi)恰有 8個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出 a的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形CGFE的頂點(diǎn)C,D,E在同一條直線上,頂點(diǎn)B,C,G在同一條直線上.OEG的中點(diǎn),∠EGC的平分線GH過(guò)點(diǎn)D,交BE于點(diǎn)H,連接FHEG于點(diǎn)M,連接OH.以下四個(gè)結(jié)論:GHBE;EHM∽△GHF;12,其中正確的結(jié)論是( 。

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上個(gè)月某超市購(gòu)進(jìn)了兩批相同品種的水果,第一批用了2000元,第二批用了5500元,第二批購(gòu)進(jìn)水果的重量是第一批的2.5倍,且進(jìn)價(jià)比第一批每千克多1元.

1)求兩批水果共購(gòu)進(jìn)了多少千克?

2)在這兩批水果總重量正常損耗10%,其余全部售完的情況下,如果這兩批水果的售價(jià)相同,且總利潤(rùn)率不低于26%,那么售價(jià)至少定為每千克多少元?

(利潤(rùn)率=

查看答案和解析>>

同步練習(xí)冊(cè)答案