如圖,把△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)35°,得到△A′B′C,A′B′交AC于點(diǎn)D.若∠A′DC=90°,則∠A= .
55° .
【考點(diǎn)】旋轉(zhuǎn)的性質(zhì).
【分析】根據(jù)題意得出∠ACA′=35°,則∠A′=90°﹣35°=55°,即可得出∠A的度數(shù).
【解答】解:∵把△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)35°,得到△A′B′C,A′B′交AC于點(diǎn)D,∠A′DC=90°,
∴∠ACA′=35°,則∠A′=90°﹣35°=55°,
則∠A=∠A′=55°.
故答案為:55°.
【點(diǎn)評(píng)】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及三角形內(nèi)角和定理等知識(shí),得出∠A′的度數(shù)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖(1),邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A、B重合),
點(diǎn)F在BC邊上(不與B、C)重合.
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí)記為點(diǎn)H;
依次操作下去……
(1)圖(2)中的△DEF是經(jīng)過(guò)兩次操作后得到的,其形狀為 ,求此時(shí)
線段EF的長(zhǎng);
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH,
①請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論與前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積
求y與x的函數(shù)關(guān)系式及面積y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
今年哥哥的年齡是妹妹年齡的2倍,4年前哥哥的年齡是妹妹年齡的3倍,若設(shè)妹妹今年x歲,可列方程為( )
A.2x﹣4=3(x﹣4) B.2x=3(x﹣4) C.2x+4=3(x﹣4) D.2x+4=3x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中錯(cuò)誤的是( 。
A.函數(shù)有最小值 B.當(dāng)﹣1<x<2時(shí),y>0
C.a(chǎn)+b+c<0 D.當(dāng)x<,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線y=ax2+bx﹣3與x軸的一個(gè)交點(diǎn)為A(﹣1,0),另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C,其頂點(diǎn)為D,對(duì)稱軸為直線x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ACM是以AC為一腰的等腰三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某市新建成的一批樓房都是8層,房子的價(jià)格y(元/平方米)隨樓層數(shù)x(樓)的變化而變化.已知點(diǎn)(x,y)都在一個(gè)二次函數(shù)的圖象上(如圖),則6樓房子的價(jià)格為 元/平方米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com