【題目】某校選拔射擊運動員參加比賽,甲、乙兩人在相同的條件下連續(xù)射靶各次,命中的環(huán)數(shù)(均為不大于10的正整數(shù))如表:
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | ||||||||||
乙 |
(1)當為何值時,選派乙去參加比賽更合適,請說明理由;
(2)若乙最后兩次射靶均命中環(huán),則選派誰去參加比賽更合適?請說明理由.
【答案】(1),,,,理由見解析;(2)甲同學的成績較穩(wěn)定,應選甲參加比賽,理由見解析
【解析】
(1)利用平均數(shù)的計算公式,分別計算甲、乙兩名同學射擊環(huán)數(shù)的平均數(shù),根據(jù)乙的平均數(shù)大于甲的平均數(shù)時派乙比賽合適,列出不等式,解不等式并且取正整數(shù)解即可;
(2)當m=0時,甲、乙兩名同學射擊環(huán)數(shù)的平均數(shù)相同,所以利用方差的計算公式計算方差,因為方差小的成績穩(wěn)定,故選方差小的運動員比賽.
(1),
,
若選派乙去參加比賽更合適,則,
解得:,
因為為正整數(shù),
所以,,,;
(2)當時,,
,
,
∴因為甲、乙兩名同學射擊環(huán)數(shù)的平均數(shù)相同,乙同學射擊的方差大于甲同學的方差,
∴甲同學的成績較穩(wěn)定,應選甲參加比賽.
科目:初中數(shù)學 來源: 題型:
【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是拋物線上兩點,則y1<y2,其中正確的結論有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,y關于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,梯形中,,,∥,,,點在邊上,以點為圓心為半徑作弧交邊于點,射線與射線交于點.
(1)若,求的長;
(2)聯(lián)結,若,求的長;
(3)線段上是否存在點,使得△與△相似,若相似,求的值,若不相似,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在中,,分別為邊上的兩動點,且在運動過程中保持,為的對角線.
(1)如圖①,若,
圖①
①當點與點重合時,探索的值;
②當點與點不重合時,探索的值;
(2)如圖②,參考(1)研究方法,若,
圖②
①當點與點重合時,探索的值;
②當點與點不重合時,探索的值;
(3)如圖③,參考(1)(2)研究方法,若時,試探索是否存在常數(shù),使得,若存在,請直接寫出的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結AE并延長,交邊BC于點F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=6,點O是邊BC上的動點,以點O為圓心,OB為半徑作圓O,交AB邊于點D,過點D作∠ODP=∠B,交邊AC于點P,交圓O與點E.設OB=x.
(1)當點P與點C重合時,求PD的長;
(2)設AP﹣EP=y,求y關于x的解析式及定義域;
(3)聯(lián)結OP,當OP⊥OD時,試判斷以點P為圓心,PC為半徑的圓P與圓O的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com