【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自2013年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個(gè)月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?
(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?
【答案】
(1)解:設(shè)平均增長率為a,根據(jù)題意得:
64(1+a)2=100
解得:a=0.25=25%或a=﹣2.25
四月份的銷量為:100(1+25%)=125(輛).
答:四月份的銷量為125輛
(2)解:設(shè)購進(jìn)A型車x輛,則購進(jìn)B型車 輛,
根據(jù)題意得:2× ≤x≤2.8×
解得:30≤x≤35
利潤W=(700﹣500)x+ (1300﹣1000)=9000+50x.
∵50>0,∴W隨著x的增大而增大.
當(dāng)x=35時(shí), 不是整數(shù),故不符合題意,
∴x=34,此時(shí) =13(輛).
答:為使利潤最大,該商城應(yīng)購進(jìn)34輛A型車和13輛B型車
【解析】(1)首先根據(jù)1月份和3月份的銷售量求得月平均增長率,然后求得4月份的銷量即可;(2)設(shè)A型車x輛,根據(jù)“A型車不少于B型車的2倍,但不超過B型車的2.8倍”列出不等式組,求出x的取值范圍;然后求出利潤W的表達(dá)式,根據(jù)一次函數(shù)的性質(zhì)求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元,若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問:
(1)甲、乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲組單獨(dú)完成需12天,乙組單獨(dú)完成需24天,單獨(dú)請(qǐng)哪個(gè)組,商店所需費(fèi)用
較少?
(3)若裝修完后,商店每天可贏利200元,現(xiàn)有三種方案:①甲組單獨(dú)做;②乙組單獨(dú)做;③甲、乙兩組同時(shí)做.你認(rèn)為哪一種施工方案更有利于商店?請(qǐng)你幫商店做出決策(可用(1)(2)問中的條件及結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,C,D是直線AB上的兩點(diǎn),∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)猜想:CE和DF是否平行?請(qǐng)說明理由;
(2)若∠DCE=130°,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔一個(gè)參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計(jì)圖表: 甲、乙射擊成績統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | 0 | ||
乙 | 1 |
甲、乙射擊成績折線圖
(1)請(qǐng)補(bǔ)全上述圖表(請(qǐng)直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)若∠ABE=15°,∠BAD=40°,則∠BED=________°;
(2)請(qǐng)?jiān)趫D中作出△BED中BD邊上的高EF;
(3)若△ABC的面積為40,BD=5,則點(diǎn)E到BC邊的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位組織職工開展植樹活動(dòng),植樹量與人數(shù)之間關(guān)系如圖,下列說法不正確的是( )
A.參加本次植樹活動(dòng)共有30人
B.每人植樹量的眾數(shù)是4棵
C.每人植樹量的中位數(shù)是5棵
D.每人植樹量的平均數(shù)是5棵
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AD+AB).請(qǐng)你猜想∠1和∠2有什么數(shù)量關(guān)系?并證明你的猜想.
解:猜想: .
證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com