【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自2013年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個(gè)月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?
(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?

【答案】
(1)解:設(shè)平均增長率為a,根據(jù)題意得:

64(1+a)2=100

解得:a=0.25=25%或a=﹣2.25

四月份的銷量為:100(1+25%)=125(輛).

答:四月份的銷量為125輛


(2)解:設(shè)購進(jìn)A型車x輛,則購進(jìn)B型車 輛,

根據(jù)題意得:2× ≤x≤2.8×

解得:30≤x≤35

利潤W=(700﹣500)x+ (1300﹣1000)=9000+50x.

∵50>0,∴W隨著x的增大而增大.

當(dāng)x=35時(shí), 不是整數(shù),故不符合題意,

∴x=34,此時(shí) =13(輛).

答:為使利潤最大,該商城應(yīng)購進(jìn)34輛A型車和13輛B型車


【解析】(1)首先根據(jù)1月份和3月份的銷售量求得月平均增長率,然后求得4月份的銷量即可;(2)設(shè)A型車x輛,根據(jù)“A型車不少于B型車的2倍,但不超過B型車的2.8倍”列出不等式組,求出x的取值范圍;然后求出利潤W的表達(dá)式,根據(jù)一次函數(shù)的性質(zhì)求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元,若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問:

(1)甲、乙兩組工作一天,商店各應(yīng)付多少錢?

(2)已知甲組單獨(dú)完成需12天,乙組單獨(dú)完成需24天,單獨(dú)請(qǐng)哪個(gè)組,商店所需費(fèi)用

較少?

(3)若裝修完后,商店每天可贏利200元,現(xiàn)有三種方案:①甲組單獨(dú)做;②乙組單獨(dú)做;③甲、乙兩組同時(shí)做.你認(rèn)為哪一種施工方案更有利于商店?請(qǐng)你幫商店做出決策(可用(1)(2)問中的條件及結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,C,D是直線AB上的兩點(diǎn),∠1+∠2=180°,DE平分∠CDF,EFAB.

(1)猜想:CEDF是否平行?請(qǐng)說明理由;

(2)若∠DCE=130°,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)k<5,若△ABC的邊長均滿足關(guān)于x的方程x2﹣3 x+8=0,則△ABC的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名選手中選拔一個(gè)參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計(jì)圖表: 甲、乙射擊成績統(tǒng)計(jì)表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

0

1

甲、乙射擊成績折線圖

(1)請(qǐng)補(bǔ)全上述圖表(請(qǐng)直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,BEABD的中線.

(1)若ABE=15°,BAD=40°,則BED=________°;

(2)請(qǐng)?jiān)趫D中作出BEDBD邊上的高EF;

(3)若ABC的面積為40,BD=5,則點(diǎn)EBC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DEABE,則下列結(jié)論:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正確的是(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位組織職工開展植樹活動(dòng),植樹量與人數(shù)之間關(guān)系如圖,下列說法不正確的是( )

A.參加本次植樹活動(dòng)共有30人
B.每人植樹量的眾數(shù)是4棵
C.每人植樹量的中位數(shù)是5棵
D.每人植樹量的平均數(shù)是5棵

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在四邊形ABCD,AC平分∠BADCEABE,AEAD+AB.請(qǐng)你猜想∠1和∠2有什么數(shù)量關(guān)系?并證明你的猜想

猜想   

證明

查看答案和解析>>

同步練習(xí)冊(cè)答案