【題目】如圖甲,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)A、B,⊙O的半徑為2 個(gè)單位長(zhǎng)度,點(diǎn)P為直線y=﹣x+8上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的切線PC、PD,切點(diǎn)分別為C、D,且PC⊥PD.
(1)試說(shuō)明四邊形OCPD的形狀(要有證明過(guò)程);
(2)求點(diǎn)P的坐標(biāo)
(3)若直線y=﹣x+8沿x軸向左平移得到一條新的直線y1=﹣x+b,此直線將⊙O的圓周分得兩段弧長(zhǎng)之比為1:3,請(qǐng)直接寫(xiě)出b的值;
(4)若將⊙O沿x軸向右平移(圓心O始終保持在x軸上),試寫(xiě)出當(dāng)⊙O與直線y=﹣x+8有交點(diǎn)時(shí)圓心O的橫坐標(biāo)m的取值范圍.(直接寫(xiě)出答案)

【答案】
(1)解:四邊形OCPD為正方形.理由如下:

連接OC、OD,如圖甲,

∵PC和PD為切線,

∴OC⊥PC,PD⊥PD,

而PC⊥PD,

∴∠OCP=∠ODP=∠CPD=90°,

∴四邊形OCPD為矩形,

而OC=OD,

∴四邊形OCPD為正方形.


(2)解:作PF⊥x軸于F,如圖甲,

∵四邊形OCPD為正方形,

∴OP= OD= 2 =2 ,

設(shè)P(t,﹣t+8),

∴t2+(﹣t+8)2=(2 2,解得t1=2,t2=6,

∴P點(diǎn)坐標(biāo)為(2,6)或(6,2)


(3)解:如圖乙,

∵直線y1=﹣x+b將⊙O的圓周分得兩段弧長(zhǎng)之比為1:3,

即直線y1=﹣x+b將⊙O的圓周分得的劣弧為圓周的 ,

∵直線y1=﹣x+b與坐標(biāo)軸的夾角為45°,

∴直線y1=kx+b與坐標(biāo)的交點(diǎn)A和點(diǎn)B為⊙O與坐標(biāo)的交點(diǎn),

當(dāng)點(diǎn)A和點(diǎn)B都在坐標(biāo)軸的正半軸上時(shí),b=2 ;當(dāng)點(diǎn)A和點(diǎn)B都在坐標(biāo)軸的負(fù)半軸上時(shí),b=﹣2 ,

即b的值為±2


(4)解:當(dāng)x=0時(shí),y=﹣x+8=8,則A(0,8),

當(dāng)y=0時(shí),﹣x+8=0,解得x=8,則B(8,0),

∴OA=OB,

∴△OAB為等腰直角三角形,

∴∠ABO =45°,

當(dāng)圓移動(dòng)到點(diǎn)O′時(shí)與直線AB相切,作O′M⊥AB,如圖丙,則O′M=2 ,

∵∠MBO′=45°,

∴△O′BM為等腰直角三角形,

∴BO′= O′B=2 ,

∴OO′=8﹣2 ,

∴點(diǎn)O′的坐標(biāo)為(8﹣2 ,0),

當(dāng)圓移動(dòng)到點(diǎn)O″時(shí)與直線AB相切,作O″N⊥AB,如圖丙,同理可得B O″=2 ,

∴OO′=8+2

∴點(diǎn)O″的坐標(biāo)為(8+2 ,0),

∴當(dāng)⊙O與直線y=﹣x+8有交點(diǎn)時(shí)圓心O的橫坐標(biāo)m的取值范圍為8﹣2 ≤m≤8+2


【解析】(1)四邊形OCPD為正方形.理由如下:連接OC、OD(如圖甲),根據(jù)切線性質(zhì)知OC⊥PC,PD⊥PD,結(jié)合已知條件得∠OCP=∠ODP=
∠CPD=90°,再由矩形判定得四邊形OCPD為矩形,又根據(jù)一組鄰邊相等的矩形是正方形即可得證.
(2)作PF⊥x軸于F(如圖甲),由正方形性質(zhì)知OP= OD=2 ,設(shè)P(t,﹣t+8),根據(jù)勾股定理得一個(gè)方程,解之即可得出P點(diǎn)坐標(biāo).
(3)如圖乙,由已知得直線y1=﹣x+b將⊙O的圓周分得的劣弧為圓周的 ,再分情況討論:①當(dāng)點(diǎn)A和點(diǎn)B都在坐標(biāo)軸的正半軸上時(shí),b=2 ;②當(dāng)點(diǎn)A和點(diǎn)B都在坐標(biāo)軸的負(fù)半軸上時(shí),b=﹣2 ;從而得出答案.

(4)由直線解析式可知A(0,8),B(8,0),從而得出△OAB為等腰直角三角形,再分情況討論:①當(dāng)圓移動(dòng)到點(diǎn)O′時(shí)與直線AB相切,作O′M⊥AB(如圖丙),從而得△O′BM為等腰直角三角形,由等腰直角三角形性質(zhì)知BO′= O′B=2 ,從而得點(diǎn)O′的坐標(biāo)為(8﹣2 ,0);

②當(dāng)圓移動(dòng)到點(diǎn)O″時(shí)與直線AB相切,作O″N⊥AB(如圖丙),由等腰直角三角形性質(zhì)知B O″=2 ,從而得點(diǎn)O″的坐標(biāo)為(8+2 ,0),

從而得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小丹、小林是某中學(xué)八年級(jí)的同班同學(xué),在升入九年級(jí)時(shí),學(xué)校打算重新組班,他們將被隨機(jī)編入A,B,C三個(gè)班.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖法或列表法,列出所有可能的結(jié)果;
(2)求兩人再次成為同班同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對(duì)應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過(guò)的路程大于小林前15s跑過(guò)的路程

D. 小林在跑最后100m的過(guò)程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2DA,以點(diǎn)A為圓心,AB為半徑的圓弧交DC于點(diǎn)E,交AD的延長(zhǎng)線于點(diǎn)F,設(shè)DA=2.

(1)求線段EC的長(zhǎng);
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市市民晚飯后1小時(shí)內(nèi)的生活方式,調(diào)查小組設(shè)計(jì)了“閱讀”、“鍛煉”、“看電視”和“其它”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問(wèn)題:

(1)本次共調(diào)查了名市民;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;并在條形圖上方寫(xiě)上數(shù)據(jù);
(3)該市共有480萬(wàn)市民,估計(jì)該市市民晚飯后1小時(shí)內(nèi)鍛煉的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是用形狀大小都相同的黑色棋子擺成的圖形,觀察規(guī)律完成下列問(wèn)題:

第1個(gè)圖形 第2個(gè)圖形 第3個(gè)圖形 …

(1)填寫(xiě)下表:

圖形序號(hào)(個(gè))

1

2

3

4

棋子的顆數(shù)

4

7

10

(2)照這樣方式下去,寫(xiě)出擺第n個(gè)圖形的棋子數(shù)為_____________________

(3)你知道第153個(gè)圖形需要幾顆棋子嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′

(1)在給定方格紙中畫(huà)出平移后的△A′B′C′

(2)畫(huà)出BC邊上的高線AE;

(3)利用網(wǎng)格點(diǎn)和三角板畫(huà)圖或計(jì)算:△A′B′C′的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知直線BC//ED

1)若點(diǎn)A在直線DE上,且∠B=44°,∠EAC=30°,求∠BAC的度數(shù);

2)若點(diǎn)GBC的延長(zhǎng)線上,求證:∠ACG =BAC+B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.

(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來(lái)證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請(qǐng)給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線y=﹣x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案