精英家教網 > 初中數學 > 題目詳情
如圖,點A在y軸上,點B在x軸上,且OA=OB=1,經過原點O的直線l交線段AB于點C,過C作OC的垂線,與直線x=1相交于點P,現將直線l繞O點旋轉,使交點C從A向B運動,但P點必須在第一象限內,并記AC的長為t,分析此圖后,對下列問題作出探究:
(1)通過動手測量線段OC和CP的長來判斷它們之間的大小關系?并證明你得到的結論;
(2)設點P的坐標為(1,b),試寫出b關于t的函數關系式和變量t的取值范圍。
(3)若題中的“P點必須在第一象限內”改為“P點在直線x=1上”,其他條件不變,求出當△PBC為等腰三角形時點P的坐標。 
解:(1)OC=CP
證明:過點C作ED∥OB交直線x=1于點D,交y軸于點E
∴∠OEC=∠EOB=90°,∠OBD=∠BDE=90°
∴四邊形OBDE是矩形 ∴OE=BD
∵OA=OB   ∴∠ACE=∠EAC=45° ∴∠BCD=∠CBD=45° ∴CD=DB   ∴OE=CD  
∵OC⊥CP   ∴∠1+∠3=90° ∴∠2+∠3=90° ∴∠1=∠2
∵∠OEC=∠PDC=90° ∴△OCE≌△CPD  ∴OC=CP 
(2)∵AC=t   ∴AE=
∵AO=1   ∴OE=  ∴BD=  ∴b=PB=DB-DP=-DP  
∵DP=EC=  ∴b=        
∵點P在第一象限內  ∴b=(0≤t<
(3)當t=0時,即點C與點A重合時△PBC為等腰三角形 ∴P(1,1)          
當點P在第四象限且CB=BP時,有BD=CD=
∴BP=BC=CD=-t   ∴DP=BD+BP=+-t
由(2)知,DP=CE=   ∴+-t=
∴t=1   ∴CB=AB-AC=-t=-1
∴PB=CB=-1   
∵點P在第四象限 ∴P(1,1-
綜上可知:P點坐標為(1,1)或(1,1-
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知,如圖,點M在x軸上,以點M為圓心,2.5長為半徑的圓交y軸于A、B兩點,交x軸于C(精英家教網x1,0)、D(x2,0)兩點,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的兩根.
(1)求點C、D及點M的坐標;
(2)若直線y=kx+b切⊙M于點A,交x軸于P,求PA的長;
(3)⊙M上是否存在這樣的點Q,使點Q、A、C三點構成的三角形與△AOC相似?若存在,請求出點的坐標,并求出過A、C、Q三點的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.若函數y=
k
x
(x<0)的圖象過C點,則k的值是( 。
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C精英家教網的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數y=-x2+(a+1)x+6的圖象經過點B,求這個二次函數的解析式,并寫出使二次函數值小于一次函數y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,精英家教網-1)
(1)求經過B、E、C三點的二次函數的解析式;
(2)若經過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設Q點的縱坐標為y,求y關于t的函數關系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當y=0時,求切線PM的解析式,并借助函數圖象,求出(1)中拋物線在切線PM下方的點的橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點I在x軸上,以I為圓心、r為半徑的半圓I與x軸相交于點A、B,與y軸相精英家教網交于點D,順次連接I、D、B三點可以組成等邊三角形.過A、B兩點的拋物線y=ax2+bx+c的頂點P也在半圓I上.
(1)證明:無論半徑r取何值時,點P都在某一個正比例函數的圖象上.
(2)已知兩點M(0,-1)、N(1、0),且射線MN與拋物線y=ax2+bx+c有兩個不同的交點,請確定r的取值范圍.
(3)請簡要描述符合本題所有條件的拋物線的特征.

查看答案和解析>>

同步練習冊答案