【題目】如圖,在△ABC中,AD平分∠BAC,按如下步作圖:①分別以點A,D為圓心,以大于AD的長為半徑在AD兩側(cè)作弧,兩弧交于兩點M,N;②作直線MN分別交AB,AC于點E,F;③連接DE,DF,若BD=6,AE=4,CD=3,則CF的長是( 。
A.1B.1.5C.2D.3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中AC,BD相交于點O,點E是OA的中點,連接BE并延長AD于點F,已知△AEF的面積=1,則平行四邊形ABCD的面積是( 。
A.24B.18C.12D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在社會實踐課上,小聰所在小組要測量一條小河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上的點A處測得河對岸小樹C位于東北方向,然后向東沿河岸走了30米,到達B處測得河對岸小樹D位于北偏東30°的方向,又有同學(xué)測得CD=10米
(1)∠EAC= 度,∠DBN= 度;
(2)求小河的寬度AE.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)計劃為新生配備如圖(1)所示的折疊椅.圖(2)是折疊椅撐開后的側(cè)面示意圖,其中椅腿AB和CD的長相等,O是它們的中點.為使折疊椅既舒適又牢固,廠家將撐開后的折疊椅高度設(shè)計為32cm,∠DOB=100°,那么椅腿的長AB和篷布面的寬AD各應(yīng)設(shè)計為多少cm?(結(jié)果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,射線AG為⊙O的切線,點A為切點,點C為射線AG上任意一點,連接OC交⊙O于點E,過點B作BD∥OC交⊙O于點D,連接CD,DE,OD.
(1)求證:△OAC≌△ODC;
(2)①當∠OCA的度數(shù)為 時,四邊形BOED為菱形;
②當∠OCA的度數(shù)為 時,四邊形OACD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個頂點和點O都在正方形網(wǎng)格的格點上,每個小正方形的邊長都為1.
(1)將△ABC先向右平移4個單位,再向上平移2個單位得到△A1B1C1,請畫出△A1B1C1;
(2)請畫出△A2B2C2,使△A2B2C2和△ABC關(guān)于點O成中心對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都市第十三次黨代會提出實施“東進”戰(zhàn)略,推動了城市發(fā)展格局“千年之變”成都龍泉山城市森林公園借“東進”之風(fēng),聚全市之力,著力打造一個令世界向往的城市中心,如圖為成都市龍泉山城市豪林公園三個景點A,B,C的平面示意圖,景點C在B的正北方向5千米處,景點A在B的東北方向,在C的北偏東75°方向上.
(1)∠BAC的大小
(2)求景點A,C的距離(=1.414,=1.732,sin75°≈0.966,cos75°≈0.259,tan75°≈3.732,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( )
A. B. 2 C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com