【題目】如圖,在四邊形中,,,,,點從點出發(fā),以每秒單位的速度向點運動,點從點同時出發(fā),以每秒單位的速度向點運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設(shè)運動時間為秒.

1)當(dāng)時,若以點,和點,,,中的兩個點為頂點的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.

2)若以點,和點,,,中的兩個點為頂點的四邊形為菱形,且線段為菱形的一條對角線,請直接寫出的值.

【答案】1)當(dāng)t=4時,線段為平行四邊形的一邊;(2v的值是21

【解析】

1)由線段為平行四邊形的一邊分兩種情況,利用平行四邊形的性質(zhì)對邊相等建立方程求解即可得到結(jié)論;

2)由線段為菱形的一條對角線,用菱形的性質(zhì)建立方程求解即可求出速度.

1)由線段為平行四邊形的一邊,分兩種情況:

①當(dāng)P、Q兩點與AB兩點構(gòu)成的四邊形是平行四邊形時,

APBQ,

∴當(dāng)AP=BQ時,四邊形APQB是平行四邊形,

此時t=22-3t,解得t=;

②當(dāng)PQ兩點與C、D兩點構(gòu)成的四邊形是平行四邊形時,

PDQC,

∴當(dāng)PD=QC時,四邊形PQCD是平行四邊形,

此時16-t=3t,解得t=4;

綜上,當(dāng)t=4時,線段為平行四邊形的一邊;

2)在RtABP,,AP=t

,

當(dāng)PD=BQ=BP時,四邊形PBQD是菱形,

,解得

∴當(dāng)t=6,點Q的速度是每秒2個單位時四邊形PBQD是菱形;

RtABQ,BQ=22-vt,

當(dāng)AP=AQ=CQ時,四邊形AQPC是菱形,

,解得,

∴當(dāng)t=,點Q的速度是每秒1個單位時四邊形AQPC是菱形,

綜上,v的值是21.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,將一塊含有30°角的直角三角尺DEF按如圖所示放置,讓三角尺在BC所在的直線上向右平移.如圖,當(dāng)點E與點B重合時,點A恰好落在三角尺的斜邊DF上.

(1)利用圖證明:EF=2BC.

(2)在三角尺的平移過程中,在圖中線段AH=BE是否始終成立(假定AB,AC與三角尺的斜邊的交點分別為G,H)?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的兩個頂點坐標為,,若將菱形繞點以每秒的速度逆時針旋轉(zhuǎn),則第秒時,菱形兩對角線交點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進甲、乙兩種商品共件,這兩種商品的進價、售價如表所示:

進價(元/件)

售價(元/件)

甲種商品

乙種商品

設(shè)購進甲種商品,且為整數(shù))件,售完此兩種商品總利潤為元.

1)該商場計劃最多投入元用于購進這兩種商品共件,求至少購進甲種商品多少件?

2)求的函數(shù)關(guān)系式;

3)若售完這些商品,商場可獲得的最大利潤是__________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2bx3的圖象與x軸交于AB兩點,與y軸交于點C,且點C、D是拋物線上的一對對稱點

1】求拋物線的解析式

2】求點D的坐標,并在圖中畫出直線BD

3】求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿足什么條件時,上述二次函數(shù)的值大于該一次函數(shù)的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A -1,0),B 5,0)兩點,直線y軸交于點,與軸交于點x軸上方的拋物線上一動點,過點軸于點,交直線于點設(shè)點的橫坐標為

1)求拋物線的解析式;

2)若,求的值;

3)若點是點關(guān)于直線的對稱點,是否存在點,使點落在軸上?若存在,請直接寫出相應(yīng)的點的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,其對稱軸是,且過點,下列說法:;;;,是拋物線上兩點,則,其中正確的有  

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是4,點A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案