已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.

(1)求點A、B、C、D的坐標,并在下面直角坐標系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.
(1)A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4)圖形見解析;
(2)拋物線y=x2-2x-3可由y=x2先向右平移1個單位,再向下平移4個單位而得到;
(3)四邊形OCDB的面積為

試題分析:(1)先把此二次函數(shù)化為y=(x+1)(x﹣3)的形式,即可求出A、B兩點的坐標,由二次函數(shù)的解析式可知c=﹣3,故可知C點坐標,由二次函數(shù)的頂點式即可求出其頂點坐標;
(2)根據(jù)四邊形OCDB的面積=S矩形OEFB﹣S△BDF﹣S△CED即可解答.
試題解析:(1)∵二次函數(shù)y=x2﹣2x﹣3可化為y=(x+1)(x﹣3),A在B的左側(cè),
∴A(﹣1,0),B(3,0),
∵c=﹣3,
∴C(0,﹣3),
∵x===1,y==﹣4,
∴D(1,﹣4),故此函數(shù)的大致圖象為:

(2)拋物線y=x2-2x-3可由y=x2先向右平移1個單位,再向下平移4個單位而得到;
(3)連接CD、BD,
則四邊形OCDB的面積=S矩形OEFB﹣S△BDF﹣S△CED
=OB•|OE|﹣DF•|BF|﹣DE•CE
=3×4﹣×2×4﹣×1×1
=12﹣4﹣
=

考點:二次函數(shù)圖象上點的坐標特征.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在二次函數(shù)中,函數(shù)y與自變量x的部分對應值如下表:
x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求這個二次函數(shù)的表達式;
(2)當x的取值范圍滿足什么條件時,?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該建材店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7. 5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價應定為每噸多少元?
(4)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù).

(1)在給定的直角坐標系中,畫出這個函數(shù)的圖象;
(2)根據(jù)圖象,寫出當y<0時,x的取值范圍;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點A(2,-3),B(-1,0).
(1)求二次函數(shù)的解析式;
(2)觀察函數(shù)圖象,要使該二次函數(shù)的圖象與軸只有一個交點,應把圖象沿軸向上平移幾個單位?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=1.下列結(jié)論:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O,其中正確的是( 。
A.①③B.只有②C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,直線和拋物線在第一象限交于點A,過A作軸于點.如果取1,2,3,…,n時對應的△的面積為,那么_____;_____.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知下列函數(shù) ① ② ③,其中,圖象通過平移可以得到函數(shù)的圖像的有                 .(填寫所有正確選項的序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=3x2的圖象向左平移2個單位,得到新的圖象的二次函數(shù)表達式是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案