【題目】在一幅長60 cm、寬40 cm的長方形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個掛圖的面積是2816 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O為△ADB的外接圓,DH⊥AB于點(diǎn)H,現(xiàn)將△AHD沿AD翻折得到△AED,AE交⊙O于點(diǎn)C,連接OC交AD于點(diǎn)G.
(1)求證:DE是⊙O的切線;
(2)若AB=10,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠B=4∠BAC.延長BC到點(diǎn)D,使CD=CB,連接AD,過點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:∠B=2∠BAD;
(3)用等式表示線段EA,EB和DB之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,以A為圓心,AD為半徑的弧交AB的延長線于點(diǎn)E,連接BD,若AD=2AB=4,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△CDE為等腰直角三角形,∠BAC=∠DEC=90°,連接AD,取AD中點(diǎn)P,連接BP,并延長到點(diǎn)M,使BP=PM,連接AM、EM、AE,將△CDE繞點(diǎn)C順時針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)D在BC上,E在AC上時,AE與AM的數(shù)量關(guān)系是______,∠MAE=______;
(2)將△CDE繞點(diǎn)C順時針旋轉(zhuǎn)到如圖②所示的位置,(1)中的結(jié)論是否仍然成立,若成立,請給出證明,若不成立,請說明理由;
(3)若CD=BC,將△CDE由圖①位置繞點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<360°),當(dāng)ME=CD時,請直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的甲、乙兩輛貨車分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達(dá)C地,并在C地用1小時配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,下圖是甲、乙兩車間的距離(千米)與乙車出發(fā)(時)的函數(shù)的部分圖像
(1)A、B兩地的距離是 千米,甲車出發(fā) 小時到達(dá)C地;
(2)求乙車出發(fā)2小時后直至到達(dá)A地的過程中,與的函數(shù)關(guān)系式及的取值范圍,并在圖中補(bǔ)全函數(shù)圖像;
(3)乙車出發(fā)多長時間,兩車相距150千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2+(m-2)x+m-3=0.
(1)求證:無論m取什么實(shí)數(shù),這個方程總有兩個不相等的實(shí)數(shù)根;
(2)若這個方程的兩個實(shí)數(shù)根x1,x2滿足2x1+x2=m+1,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com