解:過點P作PQ⊥x軸于Q,則PQ=n,OQ=m,
(1)當n=1時,s=,∴a==.
∴A(,0)
(2)解法一:
∵OP=AP,PA⊥OP,
∴△OPA是等腰直角三角形.
∴m=n=.
∴1+=an.
即n4﹣4n2+4=0,
∴k2﹣4k+4=0,
∴k=2.
解法二:
∵OP=AP,PA⊥OP,
∴△OPA是等腰直角三角形.
∴m=n.
設(shè)△OPQ的面積為s1
則:s1=×mn=(1+),
即:n4﹣4n2+4=0,
∴k2﹣4k+4=0,
∴k=2.
(3)
∵PA⊥OP,PQ⊥OA,
∴△OPQ∽△OAP.
設(shè):△OPQ的面積為s1,則=
即:=化簡得:
2n4+2k2﹣kn4﹣4k=0
(k﹣2)(2k﹣n4)=0,
∴k=2或k=(舍去),
∴當n是小于20的整數(shù)時,k=2.
∵OP2=n2+m2=n2+又m>0,k=2,
∴n是大于0且小于20的整數(shù).
當n=1時,OP2=5,
當n=2時,OP2=5,
當n=3時,OP2=32+=9+=,
當n是大于3且小于20的整數(shù)時,
即當n=4、5、6…19時,OP2的值分別是:
42+、52+、62+…192+,
∵192+>182+>32+>5,
∴OP2的最小值是5.
科目:初中數(shù)學 來源: 題型:
k |
x |
n4 |
4 |
n4 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源:第27章《相似》中考題集(15):27.2 相似三角形(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2005年福建省廈門市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com