【題目】在湖邊高出水面50 m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°.則飛艇離開湖面的高度( )

A.
B.
C.
D.

【答案】D
【解析】解:設(shè)AE=xm,在Rt△AEP中∠PAE=45°,則∠P=45°,
∴PE=AE=x,
∵山頂A處高出水面50m,
∴OE=50m,
∴OP′=OP=PE+OE=x+50,
∵∠P′AE=60°,
∴P′E=tan60°AE= x,
∴OP′=P′E﹣OE= x﹣50,
∴x+50= x﹣50,
解得:x=50( +1)(m),
∴PO=PE+OE=50( +1+50=50 +100(m),
即飛艇離開湖面的高度是(50 +100)m;
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解關(guān)于方向角問題(指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題

(1)請(qǐng)?jiān)跀?shù)軸上標(biāo)出下列各數(shù),按從小到大的順序排列,并用“<”號(hào)連接:

2,﹣2,﹣,0.5;

(2)有理數(shù)ab在數(shù)軸上的位置如圖所示:

化簡(jiǎn):|a|=   ,|﹣b|=   ,|1+a|=   ,|1﹣b|=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AD⊥CD于點(diǎn)D.
(1)求證:AC平分∠DAB;
(2)若點(diǎn)E為 的中點(diǎn),AD= ,AC=8,求AB和CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在百貨商場(chǎng)購(gòu)進(jìn)了A、B兩種品牌的籃球,購(gòu)買A品牌籃球花費(fèi)了2400元,購(gòu)買B品牌籃球花費(fèi)了1950元,且購(gòu)買A品牌籃球數(shù)量是購(gòu)買B品牌籃球數(shù)量的2倍,已知購(gòu)買一個(gè)B品牌籃球比購(gòu)買一個(gè)A品牌籃球多花50元.
(1)求購(gòu)買一個(gè)A品牌、一個(gè)B品牌的籃球各需多少元?
(2)該學(xué)校決定再次購(gòu)進(jìn)A、B兩種品牌籃球共30個(gè),恰逢百貨商場(chǎng)對(duì)兩種品牌籃球的售價(jià)進(jìn)行調(diào)整,A品牌籃球售價(jià)比第一次購(gòu)買時(shí)提高了10%,B品牌籃球按第一次購(gòu)買時(shí)售價(jià)的9折出售,如果這所中學(xué)此次購(gòu)買A、B兩種品牌籃球的總費(fèi)用不超過3200元,那么該學(xué)校此次最多可購(gòu)買多少個(gè)B品牌籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn),點(diǎn)R是點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn),直線QR分別交∠AOB兩邊OA,OB于點(diǎn)M,N,連結(jié)PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次消防演習(xí)中,消防員架起一架25米長(zhǎng)的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.

1)求這個(gè)梯子的頂端距地面有多高?

2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長(zhǎng)度不變),那么云梯的底部在水平方向應(yīng)滑動(dòng)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(jí)(1)班的宣傳委員在辦黑板報(bào)時(shí),采用了下面的圖案作為邊框,其中每個(gè)黑色六邊形與6個(gè)白色六邊形相鄰.若一段邊框上有45個(gè)黑色六邊形,則這段邊框共有白色六邊形(  )

A. 182個(gè) B. 180個(gè) C. 272個(gè) D. 270個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經(jīng)過點(diǎn)C,且與AB交于點(diǎn)E.若OD=2,則△OAE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

1)如圖1,若ABCD,點(diǎn)PAB、CD內(nèi)部,B=50°,D=30°,求BPD

2)如圖2,將點(diǎn)P移到ABCD外部,則BPD、BD之間有何數(shù)量關(guān)系?(不需證明)

3)如圖3,寫出BPDBDBQD之間的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

4)如圖4,求出A+B+C+D+E+F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案