【題目】如圖O是邊長為9的等邊三角形ABC內(nèi)的任意一點,且ODBC,交AB于點D,OFAB,交AC于點F,OEAC,交BC于點E,則OD+OE+OF的值為( 。

A. 3 B. 6 C. 8 D. 9

【答案】D

【解析】

根據(jù)等邊三角形,平行線的性質(zhì),和平行四邊形的判定,并根據(jù)等腰梯形性質(zhì)求解.

延長OD交AC于點G,

∵OE∥CG,OG∥CE,

∴四邊形OGCE是平行四邊形,有OE=CG,∠OGF=∠C=60°,

∵OF∥AB,

∴∠OFG=∠A=60°,

∴OF=OG,

∴△OGF是等邊三角形,

∴OF=FG,

∵OD∥BC,

∴∠ADO=∠B=60°,
∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:| ﹣1|﹣ +

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點.若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是邊BC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③四邊形AEPF的面積=△ABC的面積的一半,④當(dāng)EF最短時,EF=AP,上述結(jié)論始終正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1坐標(biāo)為(

A.(﹣1,﹣
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積進行了證明.著名數(shù)學(xué)家華羅庚提出把數(shù)形關(guān)系(勾股定理)帶到其他星球,作為地球人與其他星球進行第一次談話的語言.

請根據(jù)圖1中直角三角形敘述勾股定理.

以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a,b為底,以a+b為高的直角梯形(如圖2).請你利用圖2,驗證勾股定理;

利用圖2中的直角梯形,我們可以證明.其證明步驟如下:

BC=a+b,AD=_____

又∵在直角梯形ABCD中有BC_____AD(填大小關(guān)系),即_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.

(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長;
(2)如圖2,將(1)中的∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.求證:BE+CF= AB.
(3)如圖3,若∠EDF的兩邊分別交AB,AC的延長線于E、F兩點,(2)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請直接寫出線段BE,AB,CF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:有一個直角三角形ABC,∠C=90°,AC=10,BC=5,一條線段PQABP、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,問P點運動到離A的距離等于___________時,ΔABC和ΔPQA全等.

查看答案和解析>>

同步練習(xí)冊答案